[1]詹炳根,孙伟,沙建芳,等.碱硅酸反应作用下混凝土中氯离子扩散规律和结合能力[J].东南大学学报(自然科学版),2006,36(6):956-961.[doi:10.3969/j.issn.1001-0505.2006.06.017]
 Zhan Binggen,Sun Wei,Sha Jianfang,et al.Chloride diffusion and binding capacity in concrete suffered from ASR[J].Journal of Southeast University (Natural Science Edition),2006,36(6):956-961.[doi:10.3969/j.issn.1001-0505.2006.06.017]
点击复制

碱硅酸反应作用下混凝土中氯离子扩散规律和结合能力()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
36
期数:
2006年第6期
页码:
956-961
栏目:
材料科学与工程
出版日期:
2006-11-20

文章信息/Info

Title:
Chloride diffusion and binding capacity in concrete suffered from ASR
作者:
詹炳根13 孙伟1 沙建芳1 许仲梓2
1 东南大学材料科学与工程学院, 南京 210096; 2 南京工业大学材料科学与工程学院, 南京 210009; 3 合肥工业大学土木建筑工程学院, 合肥 230009
Author(s):
Zhan Binggen13 Sun Wei1 Sha Jianfang1 Xu Zhongzi2
1 School of Materials Science and Engineering, Southeast University, Nanjing 210096, China
2 College of Materials Science and Engineering, Nanjing University of Technology, Nanjing 210009, China
3 School of Civil
关键词:
碱硅酸反应 混凝土 氯离子腐蚀 耐久性
Keywords:
alkali-silica reaction concrete chloride corrosion durability
分类号:
TU528.1
DOI:
10.3969/j.issn.1001-0505.2006.06.017
摘要:
采用活性集料和非活性集料配成混凝土进行对比试验,研究了氯离子在同时受到碱硅酸反应(ASR)作用的混凝土中的扩散和结合特性.所用混凝土的碱含量分别为水泥质量的0.5%和1.5%,试验温度为60 ℃,并采用3.5%和7.5%两种不同质量分数的NaCl溶液浸泡混凝土,进行了氯离子渗透试验,测定了不同浸泡龄期下混凝土试件内部总氯离子含量和自由氯离子含量.用XRD和SEM以及压汞法对试件进行了微观结构分析.结果表明:在ASR同时作用时,混凝土的氯离子扩散速度减慢,混凝土对氯离子的结合表现为线性吸附关系,氯离子结合能力也明显降低; ASR所导致的开裂不会明显提高氯离子的侵入.由于氯离子扩散速度减慢,混凝土钢筋锈蚀时间延迟,但并不能得到抑制,并且由于氯离子结合能力的降低以及ASR的发生,孔溶液中C(Cl-)/C(OH-)提高,反而会使锈蚀加快.
Abstract:
Experiments were conducted to investigate the chloride diffusion and binding capacity of concrete suffered from both ASR(alkali-silica reaction)and chloride ingression. Two levels of ASR were set by adding different amount of alkali in concrete, and the ASR was accelerated by heating. Two sodium chloride solutions of various concentrations were used to ingress the concrete simultaneously. The contents of free and total chloride ion in the concrete specimens of various depths were measured after different exposure periods. The structures of some specimens were analyzed by XRD(X-ray diffraction), SEM(scanning electron microscopy)and MIP(mercury intrusion porosimetry). The results show that the diffusion rate of chloride ion is alleviated in the existence of ASR. The binding capacity of chloride in the concrete with ASR is much lower than that in the concrete without ASR. The crack induced by ASR does not promote the ingression of chloride significantly. The results suggest that in the concrete structure susceptible to ASR, the inclusion of chloride can speed up the chloride erosion because of the low capacity of chloride binding. And the chloride in surroundings, although diffuse slowly into concrete, can corrode the reinforcement in concrete in the long run.

参考文献/References:

[1] Humada H,Otsuki N,Fukute T.Properties of concrete specimens damaged by alkali-aggregate reaction,laumontite related reaction and chloride attack under marine environments[C] //Proceedings of the 8th International Conference on AAR.Kyoto,Japan,1989:603-608.
[2] Nixon P J,Page C L,Canham I,et al.Sodium chloride and alkali-aggregate reaction[C] //Proceedings of the 7th International Conference on AAR.Ottawa,Canada,1986:110-114.
[3] Hobbs D W.Concrete deterioration:causes,diagnosis,and minimizing risk [J]. International Materials Reviews,2001,46(3):117-144.
[4] Kawamura M,Takemoto K,Ichise M.,Influences of the alkali-silica reaction on the corrosion of steel reinforcement in concrete[C] //Proceedings of the 8th International Conference on AAR.Kyoto,Japan,1989:115-120.
[5] Helmuth R,Stark D,Diamond S.Alkali-silica reactivity:an overview of research [R].Washington DC:SHRP,1993.
[6] Stephen L A,Dwayne A J,Matthew A M,et al.Predicting the service life of concrete marine structures:an environmental methodology [J].ACI Structural Journal,1998,95(1):27-36.
[7] Tang L,Nilsson L O.Current development and verification of the numerical model CLINCONC for predicting chloride penetration into concrete[R].Paris:RILEM Publications,2000.
[8] Mangat P S,Gurusamy K.Chloride diffusion in steel fiber reinforced marine concrete [J]. Cement and Concrete Research, 1987,17(3):385-396.
[9] Mangat P S,Gurusamy K.Chloride diffusion in steel fiber reinforced concrete containing PFA [J].Cement and Concrete Research,1987,17(4):640-650.
[10] Wee T H,Wong S F,Swaddiwudhipong S,et al.A prediction method for long-term chloride concentration Profiles in hardened cement matrix materials [J].ACI Materials Journal,1997,94(6):565-576.
[11] Nilsson L O,Massat M,Tang L.The effect of non-linear chloride binding on the prediction of chloride penetration into concrete structures [C] //Durability of Concrete.Detroit:ACI,1994,SP-145:469-486.
[12] Birnin-Yauri U A,Glasser F P.Friedel’s salt,Ca2Al(OH)6(Cl,OH)·H2O:its solid solution and their role in chloride binding[J].Cement and Concrete Research,1998,28(12):1713-1724.
[13] Tritthart J.Chloride binding in cement II.the influence of the hydroxide concentration in the pore solution of hardened cement paste on chloride binding [J]. Cement and Concrete Research,1989,19(5):683-691.
[14] Hussain S E,Rasheeduzzafar S E,Al-Musallam A,et al.Factors affecting threshold chloride for reinforcement corrosion in concrete [J].Cement and Concrete Research,1995,25(7):1543-1555.

相似文献/References:

[1]钱春香,庄园,徐文.骨料粒径与ASR膨胀关系及计算研究进展[J].东南大学学报(自然科学版),2010,40(5):1121.[doi:10.3969/j.issn.1001-0505.2010.05.045]
 Qian Chunxiang,Zhuang Yuan,Xu Wen.Effect of aggregate size on ASR expansion and progress of its calculation model[J].Journal of Southeast University (Natural Science Edition),2010,40(6):1121.[doi:10.3969/j.issn.1001-0505.2010.05.045]
[2]王毅,叶见曙.温度梯度对混凝土曲线箱梁影响的计算方法[J].东南大学学报(自然科学版),2005,35(6):924.[doi:10.3969/j.issn.1001-0505.2005.06.021]
 Wang Yi,Ye Jianshu.Computing method of effect of thermal gradient on concrete curved box-girders[J].Journal of Southeast University (Natural Science Edition),2005,35(6):924.[doi:10.3969/j.issn.1001-0505.2005.06.021]
[3]孙巍巍,孟少平.后张无粘结预应力装配混凝土联肢抗震墙的连梁组合体抗侧性能[J].东南大学学报(自然科学版),2007,37(2):190.[doi:10.3969/j.issn.1001-0505.2007.02.003]
 Sun Weiwei,Meng Shaoping.Lateral load behavior of unbonded post-tensioned coupled concrete wall subassemblages[J].Journal of Southeast University (Natural Science Edition),2007,37(6):190.[doi:10.3969/j.issn.1001-0505.2007.02.003]
[4]潘建伍,曹双寅,何小元,等.散斑干涉在纤维与混凝土粘结面位移场测量中的应用[J].东南大学学报(自然科学版),2003,33(3):347.[doi:10.3969/j.issn.1001-0505.2003.03.025]
 Pan Jianwu,Cao Shuangyin,He Xiaoyuan,et al.Application of ESPI in displacement measurement of bond area between FRP and concrete[J].Journal of Southeast University (Natural Science Edition),2003,33(6):347.[doi:10.3969/j.issn.1001-0505.2003.03.025]
[5]符冠华,杨毅文,耿小平,等.双预应力混凝土梁桥的研究[J].东南大学学报(自然科学版),2001,31(3):128.[doi:10.3969/j.issn.1001-0505.2001.03.030]
 Fu Guanhua,Yang Yiwen,Geng Xiaoping,et al.Research on Bi-Prestressing System of Simply Supported Concrete Girder Bridge[J].Journal of Southeast University (Natural Science Edition),2001,31(6):128.[doi:10.3969/j.issn.1001-0505.2001.03.030]
[6]关宇刚,孙伟,缪昌文.冻融疲劳作用下高强混凝土劣化特征点的分析[J].东南大学学报(自然科学版),2001,31(6):25.[doi:10.3969/j.issn.1001-0505.2001.06.007]
 Guan Yugang,Sun Wei,Miao Changwen.Analysis of the Characteristic Degradation Points for High Strength Concrete Subjected to Freeze-Thaw Cycles[J].Journal of Southeast University (Natural Science Edition),2001,31(6):25.[doi:10.3969/j.issn.1001-0505.2001.06.007]
[7]顾文钧,俞建荣.水泥混凝土与沥青混凝土复合式路面温度梯度分析[J].东南大学学报(自然科学版),1997,27(3):23.[doi:10.3969/j.issn.1001-0505.1997.03.005]
 Thermal Gradient Analysis of Cement Concrete and Asphalt Concrete Composite Pavement Gu Wenjun Yu Jianrong[J].Journal of Southeast University (Natural Science Edition),1997,27(6):23.[doi:10.3969/j.issn.1001-0505.1997.03.005]
[8]聂彦锋,钱春香.基于RST的混凝土硫酸盐侵蚀评价指标分析及损伤程度预测[J].东南大学学报(自然科学版),2013,43(3):594.[doi:10.3969/j.issn.1001-0505.2013.03.027]
 Nie Yanfeng,Qian Chunxiang.Evaluation indices analysis and sulfate attack degree prediction of concrete based on RST[J].Journal of Southeast University (Natural Science Edition),2013,43(6):594.[doi:10.3969/j.issn.1001-0505.2013.03.027]
[9]吴佰建,李兆霞,郭力.模拟混凝土破坏过程的微裂纹模型及其应用[J].东南大学学报(自然科学版),2013,43(5):1034.[doi:10.3969/j.issn.1001-0505.2013.05.022]
 Wu Baijian,Li Zhaoxia,Guo Li.Micro-crack model for concrete rupture modeling and its applications[J].Journal of Southeast University (Natural Science Edition),2013,43(6):1034.[doi:10.3969/j.issn.1001-0505.2013.05.022]
[10]张云升,孙伟,陈树东,等.粉煤灰混凝土2D和3D碳化试验[J].东南大学学报(自然科学版),2006,36(4):562.[doi:10.3969/j.issn.1001-0505.2006.04.014]
 Zhang Yunsheng,Sun Wei,Chen Shudong,et al.2D and 3D carbonation of fly ash concrete[J].Journal of Southeast University (Natural Science Edition),2006,36(6):562.[doi:10.3969/j.issn.1001-0505.2006.04.014]

备注/Memo

备注/Memo:
基金项目: 国家重点基础研究发展计划(973计划)资助项目(2001CB610706).
作者简介: 詹炳根(1964—),男,博士生; 孙伟(联系人),女,教授,博士生导师,中国工程院院士,sunwei@seu.edu.cn.
更新日期/Last Update: 2006-11-20