[1]徐宝国,宋爱国.单次运动想象脑电的特征提取和分类[J].东南大学学报(自然科学版),2007,37(4):629-633.[doi:10.3969/j.issn.1001-0505.2007.04.017]
 Xu Baoguo,Song Aiguo.Feature extraction and classification of single trial motor imagery EEG[J].Journal of Southeast University (Natural Science Edition),2007,37(4):629-633.[doi:10.3969/j.issn.1001-0505.2007.04.017]
点击复制

单次运动想象脑电的特征提取和分类()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
37
期数:
2007年第4期
页码:
629-633
栏目:
生物医学工程
出版日期:
2007-07-20

文章信息/Info

Title:
Feature extraction and classification of single trial motor imagery EEG
作者:
徐宝国 宋爱国
东南大学仪器科学与工程学院, 南京 210096
Author(s):
Xu Baoguo Song Aiguo
School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China
关键词:
脑-计算机接口 脑电 运动想象 人工神经网络
Keywords:
brain-computer interface(BCI) electroencephalogram(EEG) motor imagery artificial neural network
分类号:
R318
DOI:
10.3969/j.issn.1001-0505.2007.04.017
摘要:
为了实现脑-计算机接口(BCI)系统,对运动想象脑电信号的特征进行了提取和分类.将大脑C3,C4处采集的二路运动想象脑电信号分成4段,分别建立六阶AR参数模型进行功率谱估计,再对每段数据的功率谱求和构造特征矢量,提供给误差反向传播算法进行左右手运动想象脑电模式分类.结果表明,该方法提取的特征向量较好地反应了运动想象脑电信号的事件相关去同步(ERD)和事件相关同步(ERS)的变化时程.另外,该方法识别率高,复杂性低,适合在线脑-计算机接口的应用.
Abstract:
In order to realize the brain-computer interface(BCI)system, features of motor imagery EEG(electroencephalogram)were extracted and classified. First, the motor imagery EEG signals sampled from the C3 and C4 position of the brain were divided into four segments. Next, six-order AR parameter model was used for power spectrum estimation of each segmentation EEG and the summation of power spectrum was calculated to construct the feature vector. Then, the error back propagation algorithm was utilized to classify the electroencephalogram pattern of left and right hand motor imagery. The results show that the eigenvector extracted by proposed method effectively reflects the event-related desynchronization(ERD)and event-related synchronization(ERS)time course changes of motor imagery EEG. In addition, the proposed method obtains a high recognition rate and a low complexity so as to be utilized in online BCI system.

参考文献/References:

[1] Virts J.The third international meeting on brain-computer interface technology:making a difference [J].IEEE Trans Neural Syst Rehabil Eng,2006,14(2):126-127.
[2] Vaughan T M.Brain-computer interface technology:a review of the second international meeting [J]. IEEE Trans Neural Syst Rehabil Eng,2003,11(2):94-109.
[3] Wolpaw J R,Birbaumer N,Heetderks W,et al.Brain-computer interface technology:a review of the first international meeting [J]. IEEE Trans Rehabil Eng,2000,8(2):164-173.
[4] Wolpaw J R,Birbaumer N,McFarland D J,et al.Brain-computer interface for communication and control [J].Clinical Neurophysiology,2002,113(6):767-791.
[5] Lemm S,Schafer C,Curio G.BCI competition 2003—data set Ⅲ:probabilistic modeling of sensorimotor μ rhythms for classification of imaginary hand movements [J]. IEEE Trans Biomed Eng,2004,51(6):1077-1080.
[6] Blankertz B,Muller K R,Curio G,et al.BCI competition 2003—progress and perspectives in detection and discrimination of EEG single trials [J].IEEE Trans Biomed Eng,2004,51(6):1044-1051.
[7] Pfurstcheller G,Lopes da Silva F H.Event-related EEG/MEG synchronization and desynchronizaiton:basic principles [J].Clinical Neurophysiology,1999,110(11):1842-1857.
[8] Pregenzer M,Pfurstcheller G.Frequency component selection for an EEG-based brain to computer interface [J]. IEEE Trans Rehabil Eng,1999,7(4):413-419.
[9] Wolpaw J R,Loeb G E,Allison B Z,et al.BCI meeting 2005—workshop on BCI signal processing:feature extraction and translation [J]. IEEE Trans Neural Syst Rehabil Eng,2006,14(2):135-138.
[10] Pfurstcheller G,Neuper C.Motor imagery and direct brain-computer communication [J].Proceedings of the IEEE,2001,89(7):1123-1134.
[11] McFarland D J,Anderson C W,Muller K R,et al.BCI meeting 2005—workshop on signals and recording methods [J]. IEEE Trans Neural Syst Rehabil Eng,2006,14(2):138-141.
[12] Pfurstcheller G,Muller-Putz G R,Schlogl A,et al.15 years of research at Graz University of Technology:current projects [J].IEEE Trans Neural Syst Rehabil Eng,2006,14(2):205-210.

相似文献/References:

[1]朱莉,邓娟,徐钦,等.噪声环境中听觉频率跟随响应信号分析[J].东南大学学报(自然科学版),2015,45(4):625.[doi:10.3969/j.issn.1001-0505.2015.04.002]
 Zhu Li,Deng Juan,Xu Qin,et al.Analysis of auditory frequency following response signals in noisy environment[J].Journal of Southeast University (Natural Science Edition),2015,45(4):625.[doi:10.3969/j.issn.1001-0505.2015.04.002]

备注/Memo

备注/Memo:
作者简介: 徐宝国(1981—),男,博士生; 宋爱国(联系人),男,博士,教授,博士生导师,a.g.song@seu.edu.cn.
更新日期/Last Update: 2007-07-20