# [1]易清明.标准SIMO信道盲解卷固定点算法[J].东南大学学报(自然科学版),2008,38(4):574-578.[doi:10.3969/j.issn.1001-0505.2008.04.006] 　Yi Qingming.General SIMO blind deconvolution by fixed-point method[J].Journal of Southeast University (Natural Science Edition),2008,38(4):574-578.[doi:10.3969/j.issn.1001-0505.2008.04.006] 点击复制 标准SIMO信道盲解卷固定点算法() 分享到： var jiathis_config = { data_track_clickback: true };

38

2008年第4期

574-578

2008-07-20

## 文章信息/Info

Title:
General SIMO blind deconvolution by fixed-point method

Author(s):
Yi Qingming
College of Information Science and Technology, Jinan University, Guangzhou 510632, China

Keywords:

TN911.72
DOI:
10.3969/j.issn.1001-0505.2008.04.006

Abstract:
Starting from the model of the simplest infinite impulse response(IIR)-single-input multi-output(SIMO)channel, the mathematical relationship between the observed signals and their corresponding sources is theoretically specified using the discrete Fourier transform. On the basis of this relationship, a fixed-point iterative algorithm is first proposed for the simplest IIR-SIMO blind deconvolution. Also, based on least square error(LSE)criterion, a cost function for channel filter order detection is developed for it. Then the simplest IIR-SIMO blind deconvolution method is further extended to the general SIMO channel. In this way, a general SIMO blind deconvolution fixed-point iterative algorithm is finally developed. In contrast to other existing blind deconvolution methods, the proposed algorithm has no step size to setup. In addition, it does not require the source signals to be finite alphabet. These desirable properties of the proposed methods have been demonstrated by mixing speech experiments.

## 参考文献/References:

[1] Xu G H,Liu H,Tong L,et al.A least-squares approach to blind channel identification[J]. IEEE Trans Signal Processing,1995,43(12):2982-2993.
[2] 刘海林.基于广义特征值的病态混叠盲源分离算法[J].电子学报,2006,3(11):2072-2075.
Liu Hailin.Blind separation of ill-condition mixed sources based on generalized eigenvalue[J].Acta Electronica Sinica,2006,3(11):2072-2075.(in Chinese)
[3] He Z S,Xie S L,Fu Y L.A novel framework of multiphonic acoustic echo cancellation[J]. Progress in Natural Science,2006,16(9):983-987.
[4] Bofill P,Monte E.Underdetermined convoluted source reconstruction using LP and SOCP,and a neural approximator of the optimizer [C] //Proc of 6th International Conference on Independent Component Analysis and Blind Signal Separation.Charleston,USA,2006:569-576.
[5] 谢胜利,谭北海,傅予力.基于平面聚类算法的欠定混叠盲信号分离[J].自然科学进展,2007,17(6):795-800.
Xie Shengli,Tan Beihai,Fu Yuli.Blind signal separation of underdetermined mixtures based on clustering algorithms on planes[J].Progress in Natural Science,2007,17(6):795-800.(in Chinese)
[6] Zhang Z Y,Wang J.A new approach to blind identification of SIMO channels with common zeros[C] //Proceedings of the 5th World Congress on Intelligent Control and Automation.Hangzhou,China,2004,2:1593-1596.
[7] Bai Wei,Yang Haifen,Bu Zhiyong.Blind channel identification in SIMO-OFDM systems [C] //2004 International Conference on Communications,Circuits and Systems.Chengdu,China,2004,1:318-321.
[8] Huang Y,Benesty J,Chen J.Optimal step size of the adaptive multichannel LMS algorithm for blind SIMO identification[J]. IEEE Signal Processing Letters,2005,12(3):173-176.
[9] 李晓陆,李荣华,何昭水,等.SIMO信道的卷积盲分离新算法[J].系统工程与电子技术,2007,29(9):1436-1440.
Li Xiaolu,Li Ronghua,He Zhaoshui,et al.New blind deconvolution algorithm for SIMO channel[J].Systems Engineering and Electronics,2007,29(9):1436-1440.(in Chinese)
[10] Bai Erwei,Fu Minyue.Blind system identification and channel equalization of IIR systems without statistical information[J]. IEEE Trans Signal Processing,1999,47(7):1910-1921.
[11] Bofill P,Zibulevsky M.Underdetermined source separation using sparse representations[J]. Signal Processing,2001,81(11):2353-2362.