[1]葛艳艳,陈云飞,杨决宽,等.轴向电场对纳米管道中溶液离子径向分布的影响[J].东南大学学报(自然科学版),2008,38(4):683-686.[doi:10.3969/j.issn.1001-0505.2008.04.027]
 Ge Yanyan,Chen Yunfei,Yang Juekuan,et al.Influence of axial applied potential gradient on ion radial distribution in liquid confined in cylindrical nanotubes[J].Journal of Southeast University (Natural Science Edition),2008,38(4):683-686.[doi:10.3969/j.issn.1001-0505.2008.04.027]
点击复制

轴向电场对纳米管道中溶液离子径向分布的影响()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
38
期数:
2008年第4期
页码:
683-686
栏目:
数学、物理学、力学
出版日期:
2008-07-20

文章信息/Info

Title:
Influence of axial applied potential gradient on ion radial distribution in liquid confined in cylindrical nanotubes
作者:
葛艳艳1 陈云飞12 杨决宽1 仲武1 王桂明1
1 东南大学机械工程学院, 南京 211189; 2 东南大学MEMS教育部重点实验室, 南京 211189
Author(s):
Ge Yanyan1 Chen Yunfei12 Yang Juekuan1 Zhong Wu1 Wang Guiming1
1 School of Mechanical Engineering, Southeast University, Nanjing 211189, China
2 Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 211189, China
关键词:
分子动力学模拟 纳米管道 外加电场强度 离子分布
Keywords:
molecular dynamics simulation nanotube applied potential gradient ion distribution
分类号:
O351.2
DOI:
10.3969/j.issn.1001-0505.2008.04.027
摘要:
用分子动力学模拟的方法,研究了轴向外加电场强度对圆柱形纳米管道中NaCl溶液离子径向密度分布的影响.仿真结果表明,纳米管道两端的外加电场强度增大时,系统的瞬时动能增加.离子获得较大的径向动能就可以克服所在位置势能束缚,运动到使原来浓度峰值减小的径向位置,以保证系统的自由能减小,从而导致离子径向浓度峰值变小.壁面电荷密度越小,离子受到壁面电荷的束缚就越小,这一现象越明显.由于离子的径向分布对电渗流有直接影响,因此这一仿真对电渗流的理论研究和利用外电场实现离子分离的纳流体器件的设计具有重要的参考价值.
Abstract:
The effect of an axial applied potential gradient on the ion distribution of sodium chlorine solution confined in cylindrical nanotubes is investigated with a molecular dynamics simulation model. The simulation results indicate that with the axial applied potential gradient increasing the instantaneous kinetic energy of the system enhances. Obtaining higher radial instantaneous energy, the ions escape from their position and move to other place to reduce the free energy of the system. Thus the peak value of the ion radial density is decreased. With lower surface charge density this phenomenon is more evident. Since the ion radial distributions in liquid directly affect the electroosmotic flow, this study is useful for electroosmotic flow research and the design of nanofluidic devices for species separation by applied potential gradient.

参考文献/References:

[1] Zhu Wei,Singer Sherwin J,Zheng Zhi,et al.Electro-osmotic flow of a model electrolyte [J].Phys Rev E,2005,71(14):041501.
[2] Liu Shaorong,Pu Qiaosheng,Byun C K,et al.Probing zeta potential in flat nanochannels [J]. Phys Chem C,2007,111(29):10818-10823.
[3] Chen Yunfei,Ni Zhonghua,Wang Guiming,et al.Electroosmotic flow in nanotubes with high surface charge densities [J].Nano Lett,2008,8(1):42-48.
[4] Qiao R,Aluru N R.Multiscale simulation of electroosmotic transport using embedding techniques [J]. Int J for Multiscale Comp Eng,2004,2(2):173-188.
[5] Qiao R,Aluru N R.Ion concentration and velocity profiles in nanochannel electroosmotic flows [J].Chem Phys,2003,118(10):4692-4701.
[6] Karnik R,Fan Rong,Yue Min,et al.Elecrostatic control of ions and molecules in nanofluidic transistors [J].Nano Lett,2005,5(5):943-948.
[7] Cheng Lijing,Guo L Jay.Rectified ion transport through concentration gradient in homogeneous silica nanochannels [J].Nano Lett,2007,7(10):3165-3171.
[8] Stein D,Kruithof M,Dekker C.Surface-charge-governed ion transport in nanofluidic channels [J].Phys Rev Lett,2004,93(3):035901.
[9] Cui S T,Cochran H D.Molecular dynamics simulation of interfacial electrolyte behaviors in nanoscale cylindrical pores [J]. Chem Phys,2002,117(12):5850-5854.
[10] Berendsen H J C,Postma J P M,van Gunsteren W F,et al.Molecular dynamics with coupling to an external bath [J].Chem Phys,1984,81(8):3684-3690.

相似文献/References:

[1]蒋洁,周宾,郝英立.压-电场耦合下纳米尺度水输运的MD模拟[J].东南大学学报(自然科学版),2011,41(4):757.[doi:10.3969/j.issn.1001-0505.2011.04.019]
 Jiang Jie,Zhou Bin,Hao Yingli.MD simulation of nanoscale water flow under coupled pressure-electric fields[J].Journal of Southeast University (Natural Science Edition),2011,41(4):757.[doi:10.3969/j.issn.1001-0505.2011.04.019]
[2]陈丽换,张国栋,陈云飞.纳米尺度下对黏滑现象的分子动力学模拟[J].东南大学学报(自然科学版),2010,40(1):128.[doi:10.3969/j.issn.1001-0505.2010.01.024]
 Chen Lihuan,Zhang Guodong,Chen Yunfei.Molecular dynamics simulation of stick-slip at nanoscale[J].Journal of Southeast University (Natural Science Edition),2010,40(4):128.[doi:10.3969/j.issn.1001-0505.2010.01.024]
[3]孙颖,等.白蛋白和石墨烯的结构及其相互作用的分子动力学模拟[J].东南大学学报(自然科学版),2014,44(1):123.[doi:10.3969/j.issn.1001-0505.2014.01.022]
 Sun Ying,Ding Jiali,et al.Molecular dynamics simulations of albumin and graphene structures and their interaction[J].Journal of Southeast University (Natural Science Edition),2014,44(4):123.[doi:10.3969/j.issn.1001-0505.2014.01.022]
[4]董赟,刘晨晗,段早琦,等.石墨烯的摩擦力和刚度关系的分子动力学模拟[J].东南大学学报(自然科学版),2017,47(1):28.[doi:10.3969/j.issn.1001-0505.2017.01.006]
 Dong Yun,Liu Chenhan,Duan Zaoqi,et al.Molecular dynamics simulations of stiffness-dependent friction of graphene[J].Journal of Southeast University (Natural Science Edition),2017,47(4):28.[doi:10.3969/j.issn.1001-0505.2017.01.006]

备注/Memo

备注/Memo:
作者简介: 葛艳艳(1979—),女,博士生; 陈云飞(联系人),博士,教授,博士生导师,yunfeichen@seu.edu.cn.
基金项目: 国家重大基础研究发展计划(973计划)资助项目(2006CB300404)、国家自然科学基金资助项目(50676019, 50506008,50505007)、江苏省自然科学基金资助项目(BK2006510,BK2007113).
引文格式: 葛艳艳,陈云飞,杨决宽,等.轴向电场对纳米管道中溶液离子径向分布的影响[J].东南大学学报:自然科学版,2008,38(4):683-686.
更新日期/Last Update: 2008-07-20