[1]王海军,黄洪斌,齐观晓,等.混沌激光器阵列中斑图的形成与冻结[J].东南大学学报(自然科学版),2008,38(6):1000-1003.[doi:10.3969/j.issn.1001-0505.2008.06.013]
 Wang Haijun,Huang Hongbin,Qi Guanxiao,et al.Pattern formation and frozen in chaotic laser arrays[J].Journal of Southeast University (Natural Science Edition),2008,38(6):1000-1003.[doi:10.3969/j.issn.1001-0505.2008.06.013]
点击复制

混沌激光器阵列中斑图的形成与冻结()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
38
期数:
2008年第6期
页码:
1000-1003
栏目:
电子科学与工程
出版日期:
2008-11-20

文章信息/Info

Title:
Pattern formation and frozen in chaotic laser arrays
作者:
王海军12 黄洪斌1 齐观晓1 陈理1
1 东南大学理学院, 南京 210096; 2 南京晓庄学院物理与电子工程学院, 南京 210017
Author(s):
Wang Haijun12 Huang Hongbin1 Qi Guanxiao1 Chen Li1
1 School of Sciences, Southeast University, Nanjing 210096, China
2 School of Physics and Electronic Engineering, Nanjing Xiaozhuang University, Nanjing 210017, China
关键词:
混沌激光器阵列 斑图 冻结
Keywords:
chaotic laser array pattern frozen
分类号:
TN248
DOI:
10.3969/j.issn.1001-0505.2008.06.013
摘要:
为了研究混沌激光器阵列中激光器同步行为,采用计算机数值模拟方法,对固定边界条件下的二维Lorenz-Haken激光器阵列进行了研究,发现激光器在空间上呈现出了丰富的斑图现象.实验结果表明,不同斑图的形成与激光器阵列数目大小N、激光器间耦合强度α有关.当混沌激光器阵列数目N固定时,随着激光器阵列间耦合强度的增加,激光器阵列在空间上出现的斑图依次呈现为空间无序、空间轴对称、空间中心对称状态,最终被冻结到不同的固定点,仍呈中心对称状态和空间轴对称和空间中心对称和冻结所对应的临界耦合强度αc随着激光器阵列数目大小N的增加而增加.
Abstract:
Two-dimensional Lorenz-Haken’s laser array with the fixed boundary conditions has been studied with the computer numerical simulation method. The laser array shows rich patterns. The experimental result indicates that different pattern formation can be affected by the size of the laser array and the coupling strength between the lasers. When the size of the laser array is fixed, the laser array in space presents the spatial disorder state, the spatial axial symmetrical state, and the spatial center symmetrical state with the coupling strength increasing. Finally the lasers freeze to the different fixed points, and the laser array is still centrally symmetric. The critical coupling strengths of three states(axial symmetry of space, the space center symmetry, and frozen state)increase with the size of the laser array increasing.

参考文献/References:

[1] Allaria E,Arecchi F T,Garbo A D,et al.Synchronization of homoclinic chaos [J]. Phys Rev Lett,2001,86(5):791-794.
[2] Heil T,Fischer I,Elsasser W.Chaos synchronization and spontaneous symmetry-breaking in symmetrically delay-coupled semiconductor lasers [J].Phys Rev Lett,2001,86(5):795-798.
[3] 刘金刚,沈柯,周立伟.声光双稳系统的混沌同步[J].光学学报,1997,17(7):841-846.
  Liu Jingang,Shen Ke,Zhou Liwei.Synchronization of chaos in acousto-optic bistable systems [J].Acta Optica Sinica,1997,17(7):841-846.(in Chinese)
[4] 颜森林,迟泽英,陈文建.掺铒光纤激光器反相位混沌同步及其编码[J].光学学报,2004,24(1):29-32.
  Yan Senlin,Chi Zeying,Chen Wenjian.Chaos synchronization through reverse-phase and its encoding in erbium-doped fiber lasers[J]. Acta Optica Sinica,2004,24(1):29-32.(in Chinese)
[5] 于洪洁,刘延柱.对称非线性耦合混沌系统的同步[J].物理学报,2005,54(7):3029-3033.
  Yu Hongjie,Liu Yanzhu.Synchronization of symmetrically nonlinear-coupled chaotic systems[J]. Acta Physica Sinica,2005,54(7):3029-3033.(in Chinese)
[6] Boccaletti S,Kurths J,Osipov G,et al.The synchronization of chaotic systems[J].Phys Rep,2002,366(1):1-101.
[7] Fujisaka H,Yamada T.Stability theory of synchronized motion in coupled-oscillator systems[J].Prog Theor Phys,1983,69(1):32-47.
[8] Pecora L M,Carroll T L.Synchronization in chaotic systems[J].Phys Rev Lett,1990,64(8):821-824.
[9] Pecora L M,Carroll T L.Driving systems with chaotic signals[J].Phys Rev A,1991,44(4):2374-2383.
[10] Kocarev L,Parlitz U.Generalized synchronization,predictability,and equivalence of unidirectionally coupled dynamical systems[J].Phys Rev Lett,1996,76(11):1816-1819.
[11] Rosenblum M G,Pikovsky A S,Kurths J.Phase synchronization of chaotic oscillators[J]. Phys Rev Lett,1996,76(11):1804-1807.
[12] Rosenblum M G,Pikovsky A S,Kurths J.From phase to lag synchronization in coupled chaotic oscillators[J]. Phys Rev Lett,1997,78(22):4193-4196.
[13] Voss H U.Dynamic long-term anticipation of chaotic states[J].Phys Rev Lett,2001,87(1):014102-1-4.
[14] Wang H J,Huang H B,Qi G X.Long-time anticipation of chaotic states in time-delay coupled ring and linear arrays[J]. Phys Rev E,2005,71(1):015202-1-4(R).
[15] Boccaletti S,Latora V,Moreno Y,et al.Complex networks:structure and dynamics[J]. Phys Rep,2006,424:175-308.
[16] Pecora L M.Synchronization conditions and desynchronizing patterns in coupled limit-cycle and chaotic systems[J].Phys Rev E,1998,58(1):347-360.
[17] Hu G,Zhang Y,Cerdeira H A,et al.From low-dimensional synchronous chaos to high-dimensional desynchronous spatiotemporal chaos in coupled systems[J]. Phys Rev Lett,2000,85(16):3377-3380.
[18] Liu Z,Lai Y C.Coherence resonance in coupled chaotic oscillators[J]. Phys Rev Lett,2001,86(21):4737-4740.
[19] Kiss I Z,Wang W,Hudson J L.Populations of coupled electrochemical oscillators[J].Chaos,2002,12(1):252-263.
[20] Zhan M,Kapral R.Model for line defects in complex-oscillatory spiral waves[J].Phys Rev E,2005,72(4):046221-1-7.
[21] Zhang X M,Fu M L,Xiao J H,et al.Self-organization of chaos synchronization and pattern formation in coupled chaotic oscillators[J].Phys Rev E,2006,74(1):015202-1-4(R).

相似文献/References:

[1]王海军,钱峰,黄洪斌,等.环链耦合非全同混沌激光器阵列中的同步[J].东南大学学报(自然科学版),2007,37(6):1122.[doi:10.3969/j.issn.1001-0505.2007.06.036]
 Wang Haijun,Qian Feng,Huang Hongbing,et al.Dynamic synchronization in heterogeneous chaotic laser arrays[J].Journal of Southeast University (Natural Science Edition),2007,37(6):1122.[doi:10.3969/j.issn.1001-0505.2007.06.036]

备注/Memo

备注/Memo:
作者简介: 王海军(1977—),男,博士生; 黄洪斌(联系人),男,教授,hongbinh@seu.edu.cn.
基金项目: 江苏省“青蓝工程”资助项目(4074007)、江苏省自然科学基金资助项目(BK2005062)、南京晓庄学院校级科研资助项目(2008NXY22).
引文格式: 王海军,黄洪斌,齐观晓,等.混沌激光器阵列中斑图的形成与冻结[J].东南大学学报:自然科学版,2008,38(6):1000-1003.
更新日期/Last Update: 2008-11-20