[1]周建新,司风琪,仇晓智,等.基于SVR和GA的锅炉运行氧量基准值的优化确定[J].东南大学学报(自然科学版),2008,38(6):1061-1066.[doi:10.3969/j.issn.1001-0505.2008.06.024]
 Zhou Jianxin,Si Fengqi,Qiu Xiaozhi,et al.Optimization of boiler operation oxygen content based on support vector regression and genetic algorithms[J].Journal of Southeast University (Natural Science Edition),2008,38(6):1061-1066.[doi:10.3969/j.issn.1001-0505.2008.06.024]
点击复制

基于SVR和GA的锅炉运行氧量基准值的优化确定()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
38
期数:
2008年第6期
页码:
1061-1066
栏目:
能源与动力工程
出版日期:
2008-11-20

文章信息/Info

Title:
Optimization of boiler operation oxygen content based on support vector regression and genetic algorithms
作者:
周建新1 司风琪1 仇晓智1 陈晨2 徐治皋1
1 东南大学能源与环境学院, 南京 210096; 2 安徽省电力科学研究院, 合肥 230022
Author(s):
Zhou Jianxin1 Si Fengqi1 Qiu Xiaozhi1 Chen Chen2 Xu Zhigao1
1 School of Energy and Environment, Southeast University,Nanjing 210096, China
2 Anhui Electric Power Research Institute, Hefei 230022, China
关键词:
锅炉 氧量 优化 支持向量回归 遗传算法
Keywords:
boiler oxygen content optimization support vector regression genetic algorithms
分类号:
TK227.1
DOI:
10.3969/j.issn.1001-0505.2008.06.024
摘要:
借助现场运行数据,根据锅炉运行氧量的特性,建立了基于支持向量回归的锅炉运行氧量预测模型,结果表明:SVR模型具有较高的回归精度和较好的泛化能力,能够有效地对不同工况下的锅炉氧量进行预测.在此基础上进行二次建模,获得了运行氧量、供电煤耗率与各运行参数之间的关系模型,并结合全局寻优的遗传算法,以机组的供电煤耗率为优化目标对输入参数进行寻优,确定了优化后的锅炉运行氧量基准值.计算结果表明该模型具有较高的准确性,通过全局寻优得到的氧量值具有可操作性,很好地解决了锅炉变工况运行参数基准值的确定问题.
Abstract:
Using the data of boiler operation, a support vector regression(SVR)model of the boiler oxygen content property was developed based on gas oxygen characteristic. The results show that the model based on SVR has more accurate and forcible generalization ability. The model can predict the oxygen content accurately under different conditions. After that another SVR model describing the relationship between oxygen content, unit’s power supply coal consumption rate and operation parameters was also built. Combined with the optimization algorithms(GA), the fiducial oxygen content can be determined according to the optimal object of the unit’s power supply coal consumption rate. Results confirm that this method has high calculating precision and it is suitable for engineering purposes due to its maneuverability. It also offers a method for determining the operating oxygen content under actual variant conditions.

参考文献/References:

[1] 张清峰,陈德强.煤粉锅炉运行中的氧量问题[J].华北电力技术,2002(9):1-2.
  Zhang Qingfeng,Chen Deqiang.Oxygen in running pulverized fuel boiler[J].North China Electric Power,2002(9):1-2.(in Chinese)
[2] 刘福国,郝卫东,杨建柱,等.电厂锅炉变氧量运行经济性分析及经济氧量的优化确定[J].中国电机工程学报,2003,23(2):172-176.
  Liu Fuguo,Hao Weidong,Yang Jianzhu,et al.Economic analyze for utility boiler operated in different oxygen content outlet furnace and it’s optimization[J].Proceedings of the CSEE,2003,23(2):172-176.(in Chinese)
[3] 赵绪新.基于人工智能技术的电站锅炉最优氧量预测[J].热力发电,2006(10):43-45.
  Zhao Xuxin.Forecast of optimal oxygen content in flue gas utility boiler based on artificial intelligent technology[J].Thermal power Generation,2006(10):43-45.(in Chinese)
[4] Kalogirou S A.Artificial intelligence for the modeling and control of combustion processes:a review[J].Progress in Energy and Combustion Science,2003,29(6):515-516.
[5] 蔡杰进,马晓茜,廖艳芬.锅炉运行性能与烟气含氧量优化研究[J].热力发电,2006(7):28-30.
  Cai Jiejin,Ma Xiaoqian,Liao Yanfen.Study on boiler’s operation performance and optimization of oxygen content in flue gas [J].Thermal Power Generation,2006(7):28-30.(in Chinese)
[6] Vapnik V N.The nature of statistical learning theory[M].New York:Springer,1995:7-9.
[7] Gunn S R.Support vector machines for classification and regression[R].Southampton,UK:ISIS-1-98,University of Southampton,1998.
[8] Smola A J,Schölkopf B.A tutorial on support vector regression,NC2-TR-1998-030[R].London,UK:Royal Holloway College,University of London,1998.
[9] 杨金芳,翟永杰,王东风,等.基于支持向量回归的时间序列预测[J].中国电机工程学报,2005,25(17):110-114.
  Yang Jinfang,Zhai Yongjie,Wang Dongfeng,et al.Time series prediction based on support vector regression[J].Proceedings of the CSEE,2005,25(17):110-114.(in Chinese)
[10] 赵征,曾德良,田亮,等.基于数据融合的氧量软测量研究[J].中国电机工程学报,2005,25(7):7-12.
  Zhao Zheng,Zeng Deliang,Tian Liang,et al.Research on soft-sensing of oxygen content based on data fusion [J].Proceedings of the CSEE,2005,25(7):7-12.(in Chinese)
[11] 王雷,张欣刚,王洪跃,等.基于支持向量回归算法的汽轮机热耗率建模[J].动力工程,2007,27(1):19-23.
  Wang Lei,Zhang Xingang,Wang Hongyue,et al.Model for the turbine heat rate based on the support vector regression [J].Journal of Power Engineering,2007,27(1):19-23.(in Chinese)
[12] 李元诚,方廷健,于尔铿.短期负荷预测的支持向量机方法研究[J].中国电机工程学报,2003,23(6):55-59.
  Li Yuancheng,Fang Tingjian,Yu Erkeng.Study of support vector machines for short-term load forecasting [J].Proceedings of the CSEE,2003,23(6):55-59.(in Chinese)
[13] Heo Gyunyoung,Choi Seong Soo,Chang Soon Heung.Thermal power estimation by fouling phenomena compensation using wavelet and principal component analysis[J].Nuclear Engineering and Design,2000,199(1):31-40.
[14] 雷英杰,张善文,李续武,等.MATLAB遗传算法工具箱及应用[M].西安:西安电子科技大学出版社,2005:3-4.
[15] 马天星,王恩禄,张伟,等.燃煤电站锅炉运行参数对其热效率影响的试验研究[J].锅炉技术,2006,37(6):21-25.
  Ma Tianxing,Wang Enlu,Zhang Wei,et al.Research of the affection of the operating parameters on the coal-fired utility boiler’s thermal efficiency [J].Boiler Technology,2006,37(6):21-25.(in Chinese)

相似文献/References:

[1]张永福.锅炉旋流燃烧器的壁温特性[J].东南大学学报(自然科学版),1998,28(1):81.[doi:10.3969/j.issn.1001-0505.1998.01.015]
 Zhang Yongfu.Temperature Distribution of the Coal Whirl Burner on the Boiler[J].Journal of Southeast University (Natural Science Edition),1998,28(6):81.[doi:10.3969/j.issn.1001-0505.1998.01.015]

备注/Memo

备注/Memo:
作者简介: 周建新(1980—),男,博士生; 徐治皋(联系人),男,教授,博士生导师,zgxu@seu.edu.cn.
引文格式: 周建新,司风琪,仇晓智,等.基于SVR和GA的锅炉运行氧量基准值的优化确定[J].东南大学学报:自然科学版,2008,38(6):1061-1066.
更新日期/Last Update: 2008-11-20