[1]陈自新,黄仁,张志胜,等.表面粗糙度视觉检测中环境光补偿新方法[J].东南大学学报(自然科学版),2009,39(1):136-140.[doi:10.3969/j.issn.1001-0505.2009.01.026]
 Chen Zixin,Huang Ren,Zhang Zhisheng,et al.New compensation method for surface roughness inspection by machine vision in different ambient light[J].Journal of Southeast University (Natural Science Edition),2009,39(1):136-140.[doi:10.3969/j.issn.1001-0505.2009.01.026]
点击复制

表面粗糙度视觉检测中环境光补偿新方法()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
39
期数:
2009年第1期
页码:
136-140
栏目:
材料科学与工程
出版日期:
2009-01-20

文章信息/Info

Title:
New compensation method for surface roughness inspection by machine vision in different ambient light
作者:
陈自新 黄仁 张志胜 史金飞 陈茹雯
东南大学机械工程学院, 南京 211189
Author(s):
Chen Zixin Huang Ren Zhang Zhisheng Shi Jinfei Chen Ruwen
School of Mechanical Engineering, Southeast University, Nanjing 211189, China
关键词:
表面粗糙度 机器视觉 测量 灰度共生矩阵
Keywords:
surface roughness machine vision measurement gray-level co-occurrence matrix
分类号:
TG84
DOI:
10.3969/j.issn.1001-0505.2009.01.026
摘要:
利用机器视觉方法对表面粗糙度的检测进行了研究,提出一种新的环境光补偿法来提高在不同外界环境光情况下的检测精度.利用照度计测量外界环境光的强度变化,并选取工件采样区域特征均值及灰度共生矩阵能量值拟合得到工件表面粗糙度检测值的计算多项式.与算术平均偏差法及灰度共生矩阵法进行了实验对比,对38 mm磨削轴在不同环境光下检测结果表明,当测量误差选定为±0.05 μm时,环境光补偿法检测结果的正确率比其他2种方法的正确率提高约20%.
Abstract:
The non-contact and non-destructive surface roughness inspection method based on machine vision is studied to assess different grinding surfaces in different ambient light environment. A new compensation method is proposed to improve the inspecting results. The light meter is used to measure the intensity of ambient light. Then the intensity of ambient light is fitted with extracted features of the work piece images to calculate corresponding surface roughness. The experiment comparison is made between this new method and other two methods, which are separately based on the arithmetic average absolute deviations and the gray-level co-occurrence gray matrix, to inspect work pieces in different ambient light conditions. Results from an example show that accurate ratio of the proposed method increases about twenty percent compared with the other two when inspecting error of ±0.05 μm is set.

参考文献/References:

[1] Theodore V V,Egon M,Thomas R L.Regimes of surface roughness measurable with light scattering [J].Applied Optics,1993,32(19):3401-3408.
[2] Tay C J,Wang S H,Quan C,et al.In situ surface roughness measurement using a laser scattering method [J]. Optics Communications,2003,218(1/2/3):1-10.
[3] Lu R S,Tian G Y,Duke G,et al.Grinding surface roughness measurement based on the co-occurrence matrix of speckle pattern texture[J].Applied Optics,2006,45(35):1-9.
[4] Ulf P.In-process measurement of surface roughness using light scattering [J].Wear,1998,215(1/2):54-58.
[5] Chen J C,Savage M.A fuzzy-net-based multilevel in-process surface roughness recognition system in milling operations [J]. The International Journal of Advanced Manufactured Technology,2001,17(9):670-676.
[6] Yamaguchi I,Gunma K,Kobayashi K,et al.Measurement of surface roughness by speckle correlation [J]. Optical Engineering,2004,43(11):2753-2761.
[7] Elango V,Karunamoorthy L.Effect of lighting conditions in the study of surface roughness by machine vision-an experimental design approach [J].The International Journal of Advanced Manufactured Technology,2008,37(1/2):92-103.
[8] Priya P,Ramamoorthy B.The influence of component inclination on surface finish evaluation using digital image processing finish evaluation using digital image processing[J].International Journal of Machine Tools & Manufacture,2007,47(3/4):570-579.
[9] Kumar R,Kulashekar P,Dhanasekar B,et al.Application of digital image magnification for surface roughness evaluation using machine vision evaluation using machine vision[J]. International Journal of Machine Tools & Manufacture,2005,45(2):228-234.
[10] Gadelmawla E S.A vision system for surface roughness characterization using the gray level co-occurrence matrix [J]. NDT&E International,2004,37(7):577-588.
[11] Haralick R M.Statistical and structural approaches to texture [J]. Proceeding of IEEE,1975,67(5):786-504.

相似文献/References:

[1]盖绍彦,达飞鹏,杨伟光.一种新的用于光学测量的圆点检测算法[J].东南大学学报(自然科学版),2010,40(2):326.[doi:10.3969/j.issn.1001-0505.2010.02.021]
 Gai Shaoyan,Da Feipeng,Yang Weiguang.New method for circle detection in optical measurement[J].Journal of Southeast University (Natural Science Edition),2010,40(1):326.[doi:10.3969/j.issn.1001-0505.2010.02.021]
[2]胡欢,孙汉旭,贾庆轩.基于在线重建的遥操作预测显示系统[J].东南大学学报(自然科学版),2015,45(3):448.[doi:10.3969/j.issn.1001-0505.2015.03.007]
 Hu Huan,Sun Hanxu,Jia Qingxuan.On-line reconstruction-based predictive display system for teleoperation[J].Journal of Southeast University (Natural Science Edition),2015,45(1):448.[doi:10.3969/j.issn.1001-0505.2015.03.007]

备注/Memo

备注/Memo:
作者简介: 陈自新(1980—),男,博士生; 史金飞(联系人),男,博士,教授,博士生导师,shijf@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(50805023).
引文格式: 陈自新,黄仁,张志胜,等.表面粗糙度视觉检测中环境光补偿新方法[J].东南大学学报:自然科学版,2009,39(1):136-140.
更新日期/Last Update: 2009-01-20