[1]王赞,陈云飞,贺赟晖,等.基于蒙特卡洛法的硅纳米线热导率研究[J].东南大学学报(自然科学版),2009,39(2):245-249.[doi:10.3969/j.issn.1001-0505.2009.02.012]
 Wang Zan,Chen Yunfei,He Yunhui,et al.Study on thermal conductivity of Si nanowire based on Monte Carlo model[J].Journal of Southeast University (Natural Science Edition),2009,39(2):245-249.[doi:10.3969/j.issn.1001-0505.2009.02.012]
点击复制

基于蒙特卡洛法的硅纳米线热导率研究()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
39
期数:
2009年第2期
页码:
245-249
栏目:
能源与动力工程
出版日期:
2009-03-20

文章信息/Info

Title:
Study on thermal conductivity of Si nanowire based on Monte Carlo model
作者:
王赞1 陈云飞12 贺赟晖1 陈敏华1
1 东南大学机械工程学院,南京 211198; 2 东南大学MEMS教育部重点实验室,南京 211198
Author(s):
Wang Zan1 Chen Yunfei12 He Yunhui1 Chen Minhua1
1 School of Mechanical Engineering,Southeast University,Nanjing 211198,China
2 Key Laboratory of MEMS of Ministry of Education,Southeast University,Nanjing 211198,China
关键词:
蒙特卡洛 声子 热导率 纳米线
Keywords:
Monte Carlo phonon thermal conductivity nanowire
分类号:
TK124
DOI:
10.3969/j.issn.1001-0505.2009.02.012
摘要:
声子在纳米尺度下的输运需要考虑量子效应与边界效应,通过解析方法获得其传输特性比较困难,采用蒙特卡洛方法(Monte Carlo,MC)构建了声子在体态硅与硅纳米线结构中的输运模型,简化了边界散射的选择机制与处理方法.在15~1 000 K的温度范围内,对体态硅的热导率进行了模拟,验证了MC模型对本征散射处理方法的正确性,进而模拟了等效直径为22,37与56 nm的硅纳米线在15~315 K温度范围内的热导率,37和56 nm硅纳米线热导率与实验值符合较好,22 nm硅纳米线热导率比实验值偏大.分析认为随着等效半径的减小,声子色散曲线发生改变,迟豫时间减小,声子发生边界散射的频率增加,导致热阻增大.基于以上分析,通过对边界散射迟豫时间的修正,获得了与实验值较为一致的模拟结果.
Abstract:
Due to the quantum and boundary effects,it is hard to obtain the properties of phonon transport in a low dimensional structure by means of analytical solutions. A dedicated Monte Carlo model was built by simplifying the phonon scattering processes to study the thermal properties for bulk silicon and silicon nanowire.Phonon transport in bulk silicon was simulated at temperature ranging from 15 to 1 000 K,which proves the correctness of the MC model. Furthermore, the silicon nanowires with equivalent diameter of 22,37 and 56 nm over a temperature of 15-315 K were simulated.Though the results for 37 and 56 nm nanowires agree well with experimental data,the 22 nm one deviates significantly.The results indicate that with the decrease of diameter of nanowire,the phonon disperse relations deviate from that for bulk material greatly,which leads to the reduction of boundary relaxation time and increase of the frequency of boundary scattering. By modifying the relaxation time scale,reasonable simulation results are obtained in our model.

参考文献/References:

[1] Cahill D G,Ford W K,Mahan G D,et al.Nanoscale thermal transport [J].Journal of Applied Physics,2003,93(2):793-818.
[2] Majumdar A.Thermoelectricity in semiconductor nanostructures [J].Science,2004,303(5659):777-778.
[3] Venkatasubramanian R,Siivola E,Colpitts T,et al.Thin-film thermoelectric devices with high room-temperature figure of merit [J].Nature,2001,413(6856):597-602.
[4] Callaway J.Model for lattice thermal conductivity at low temperatures [J].Physical Review,1959,113(4):1046-1051.
[5] Holland M G.Analysis of lattice thermal conductivity [J].Physical Review,1963,132(6):2461-2471.
[6] Kurosawa T.Monte Carlo simulation of hot electron problems[C] //Proceedings of the International Conference on the Physics of Semiconductor.Jpn:J Phys Soc,1966:424-427.
[7] Budd H.Path variable formulation of the hot carrier problem [J].Physical Review,1967,158(3):645-705.
[8] Klitsner T,van Cleve J E,Fischer H E,et al.Phonon radiative heat transfer and surface scattering [J].Physical Review B,1988,38(11):7576-7594.
[9] Peterson R B.Direct simulation of phonon-mediate heat transfer in a Debye crystal [J].Journal of Heat Transfer,1994,116(4):815-822.
[10] Mazumder S,Majumdar A.Monte Carlo study of phonon transport in solid thin films including dispersion and polarization [J].Journal of Heat Transfer,2001,123(4):749-759.
[11] Chen Yunfei,Li Deyu,Lukes J R,et al.Monte Carlo simulation of silicon nanowire thermal conductivity[J].Journal of Heat Transfer,2005,127(10):1129-1137.
[12] Lacroix D,Joulain K,Lemonnier D.Monte Carlo transient phonon transport in silicon and germanium at nanoscales[J].Physical Review B,2005,72(6):064305-1-064305-11.
[13] Lacroix D,Joulain K,Terris D,et al.Monte Carlo simulation of phonon confinement in silicon nanostructures:application to the determination of the thermal conductivity of silicon nanowires [J].Applied Physics Letters,2006,89(10):103104-1-103104-3.
[14] Park S K,Miler K W.Random number generator:good ones are hard to find [J].Communications of the ACM,1988,31(10):1192-1201.
[15] Li Deyu,Wu Y,Kim P,et al.Thermal conductivity of individual silicon nanowires [J].Applied Physics Letters,2003,83(14):2934-2936.
[16] Chantrenne P,Barrat J L,Blase X,et al.An analytical model for the thermal conductivity of silicon nanostructures [J].Journal of Applied Physics,2005,97(10):104318-1-104318-8.

相似文献/References:

[1]陈云飞.基于微纳结构的制冷器[J].东南大学学报(自然科学版),2006,36(3):356.[doi:10.3969/j.issn.1001-0505.2006.03.004]
 Chen Yunfei.Microcooler based on micro-nanostructures[J].Journal of Southeast University (Natural Science Edition),2006,36(2):356.[doi:10.3969/j.issn.1001-0505.2006.03.004]
[2]刘晨晗,董赟,陈伟宇,等.多层石墨烯纳米带的法向热传导[J].东南大学学报(自然科学版),2016,46(5):987.[doi:10.3969/j.issn.1001-0505.2016.05.015]
 Liu Chenhan,Dong Yun,Chen Weiyu,et al.Cross-plane thermal transport in multilayer graphene nanobundles[J].Journal of Southeast University (Natural Science Edition),2016,46(2):987.[doi:10.3969/j.issn.1001-0505.2016.05.015]

备注/Memo

备注/Memo:
作者简介: 王赞(1978—),男,博士生; 陈云飞(联系人),男,博士,教授,博士生导师,yunfeichen@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(50676019,50776017).
引文格式: 王赞,陈云飞,贺赟晖,等.基于蒙特卡洛法的硅纳米线热导率研究[J].东南大学学报:自然科学版,2009,39(2):245-249.
更新日期/Last Update: 2009-03-20