[1]赵红蕾,孙东科,潘诗琰,等.强制对流作用下溶质枝晶生长的CA-LBM模拟[J].东南大学学报(自然科学版),2009,39(2):255-261.[doi:10.3969/j.issn.1001-0505.2009.02.014]
 Zhao Honglei,Sun Dongke,Pan Shiyan,et al.CA-LBM modeling of solutal dendritic growth with forced convection[J].Journal of Southeast University (Natural Science Edition),2009,39(2):255-261.[doi:10.3969/j.issn.1001-0505.2009.02.014]
点击复制

强制对流作用下溶质枝晶生长的CA-LBM模拟()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
39
期数:
2009年第2期
页码:
255-261
栏目:
材料科学与工程
出版日期:
2009-03-20

文章信息/Info

Title:
CA-LBM modeling of solutal dendritic growth with forced convection
作者:
赵红蕾 孙东科 潘诗琰 戴挺 朱鸣芳
东南大学江苏省先进金属材料高技术研究重点实验室, 南京 211189
Author(s):
Zhao Honglei Sun Dongke Pan Shiyan Dai Ting Zhu Mingfang
Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing 211189, China
关键词:
数值模拟 枝晶生长 流场 浓度场 格子玻尔兹曼方法 元胞自动机
Keywords:
numerical simulation dendritic growth flow field concentration field lattice Boltzmann method cellular automation
分类号:
TG111.4
DOI:
10.3969/j.issn.1001-0505.2009.02.014
摘要:
应用一个二维的元胞自动机(cellular automata, CA)-格子玻尔兹曼方法(lattice Boltzmann method, LBM)耦合模型,对合金等温凝固过程中溶质枝晶在强制对流作用下的生长规律进行了模拟研究.该耦合模型采用CA方法模拟枝晶生长,同时采用基于分子动理论的LBM模拟枝晶生长过程中的流场和浓度场.应用该模型模拟分析了过冷度和成分等因素对Al-Cu合金在纯扩散和对流作用下单枝晶的生长规律的影响.结果表明,在纯扩散条件下,模拟的枝晶稳态生长尖端速度、半径、Peclet数和过冷度的关系与Lipton-Glicksman-Kurz(LGK)模型的预测结果吻合良好.对流作用下枝晶的生长形貌呈现出了不对称性,枝晶的生长在上游方向得到促进,而在下游方向受到抑制.合金成分和初始过冷度等因素会对枝晶形貌和生长动力学产生影响.
Abstract:
A two-dimensional(2D)cellular automaton-lattice Boltzmann(CA-LBM)model was employed to simulate the dendritic growth in the presence of forced convection during isothermal solidification of binary alloys. In the model, the dendritic growth is simulated by a CA approach, and the flow field and the concentration field are numerically solved using the LBM based on the gas kinetic theory. The model was applied to simulate the single dendritic growth of Al-Cu alloys in the cases of pure diffusion and melt convection. The effects of undercooling and alloy composition on the convective dendritic morphology were investigated. The results show that the simulated pure diffusive dendritic steady-state growth tip velocity, radius and Peclet number with various undercoolings are in reasonable agreement with the predictions of the Lipton-Glicksman-Kurz(LGK)model. With melt convection, the tip velocity is enhanced in the upstream region and inhibited in the downstream region, resulting in the typical asymmetric growth features of convective dendrite. It is also found that the initial compositions and the initial undercooling may influence the dendritic morphology and growth dynamics.

参考文献/References:

[1] Tong X,Beckermann C,Karma A.Phase-field simulations of dendritic crystal growth in a forced flow [J]. Physical Review E,2001,63(6):061601.
[2] Natsume Y,Ohsasa K,Narita T.Investigation of the mechanism of alloy dendrite deflection due to flowing melt by phase-field simulation [J].Mater Trans,2002,43(9):2228-2234.
[3] Lan C W,Shih C J.Efficient phase field simulation of a binary dendritic growth in a forced flow [J].Physical Review E,2004,69(3):031601.
[4] Al-Rawahi N,Tryggvason G.Numerical simulation of dendritic solidification with convection:two-dimensional geometry [J].J Comput Phys,2002,180(2):471-496.
[5] Shin Y H,Hong C P.Modeling of dendritic growth with convection using a modified cellular automaton model with a diffuse interface [J].ISIJ International,2002,42(4):359-369.
[6] Zhu M F,Lee S Y,Hong C P.Modified cellular automaton model for the prediction of dendritic growth with melt convection [J]. Physica Review E,2004,69(6):061610.
[7] Zhu M F,Dai T,Lee S Y,et al.Modeling of dentritic growth in the presence of convection [J].Science in China Series E-Technological Sciences,2005,48(3):241-257.
[8] 康秀红,杜强,李殿中,等.用元胞自动机与宏 观传输模型耦合方法模拟凝固组织[J].金属学报,2004,40(5):452-456.
  Kang Xiuhong,Du Qiang,Li Dianzhong,et al.Modeling of the solidification microstructure evolution by coupling cellular automation with macro-transport model [J]. Acta Metall Sin,2004,40(5):452-456.(in Chinese)
[9] Raabe D.Overview of the lattice Boltzmann method for nano and microscale fluid dynamics in materials science and engineering [J].Modelling Simul Mater Sci Eng,2004,12(6):R13-R46.
[10] Miller W,Succi S,Mansutti D.Lattice Boltzmann model for anisotropic liquid-solid phase transition [J].Physical Review Letters,2001,86(16):3578-3581.
[11] Miller W,Rasin I,Pimentel F.Growth kinetics and melt convection [J]. J Cryst Growth,2004,266(2):283-288.
[12] Medvedev Dmitry,Kassner Klaus.Lattice Boltzmann scheme for crystal growth in external flows [J]. Physical Review E,2005,72(5):056703.
[13] Belteran-Sanchez L,Stefanescu D M.A quantitative dendrite growth model and analysis of stability concepts [J].Metall Mater Trans A,2004,35(8):2471-2485.
[14] 于靖,许庆彦,崔锴,等.基于一种改进CA模型的微观组织模拟[J].金属学报,2007,43(7):731-738.
  Yu Jing,Xu Qingyan,Cui Kai,et al.Numerical simulation of microstructure evolution based on a modified CA method [J]. Acta Metall Sin,2007,43(7):731-738.(in Chinese)
[15] Shan B W,Lin X,Lei W,et al.A new growth Kinetics in simulation of dendrite growth by cellular automaton method [J].Advanced Materials Research,2007,26:957-962.
[16] 孙东科,朱鸣芳.CA-LB模型模拟对流枝晶生长[J].中国有色金属学报,2007,17(S1):84-89.
  Sun Dongke,Zhu Mingfang.Cellular automaton-lattice Boltzmann method for modeling of dendritic growth in flowing melt [J]. The Chinese Journal of Nonferrous Metals,2007,17(S1):84-89.(in Chinese)
[17] 郭照立,郑楚光,李青,等.流体动力学的格子Boltzmann方法[M].武汉:湖北科学技术出版社,2002:29-61.
[18] Guo Z L,Zheng C G,Shi B C.Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice Blotzmann method [J]. Chinese Physics,2002,11(6):366-374.
[19] Zhu M F,Stefanescu D M.Virtual front tracking model for the quantitative modeling of dendritic growth in solidification of alloys [J].Acta Mater,2007,55(5):1741-1755.
[20] Lipton J,Glicksman M E,Kuze W.Equiaxed dendrite growth in alloys at small undercooling [J].Metall Trans A,1987,18(3):341-345.

相似文献/References:

[1]朱志峰,方世良,王晓燕.船舶螺旋桨黏性空化流场数值方法[J].东南大学学报(自然科学版),2010,40(6):1146.[doi:10.3969/j.issn.1001-0505.2010.06.004]
 Zhu Zhifeng,Fang Shiliang,Wang Xiaoyan.Nnumerical method for viscous cavitating flow around ship propeller[J].Journal of Southeast University (Natural Science Edition),2010,40(2):1146.[doi:10.3969/j.issn.1001-0505.2010.06.004]
[2]李舒宏,张小松,杨伟华,等.多功能地源热泵埋管周围土壤的温度变化特性[J].东南大学学报(自然科学版),2010,40(5):979.[doi:10.3969/j.issn.1001-0505.2010.05.019]
 Li Shuhong,Zhang Xiaosong,Yang Weihua,et al.Temperature variation of soil around underground heat exchangers of multi-function ground source heat pump system[J].Journal of Southeast University (Natural Science Edition),2010,40(2):979.[doi:10.3969/j.issn.1001-0505.2010.05.019]
[3]姜敏,金保昇,周英贵,等.300MW燃煤锅炉SNCR过程的数值模拟[J].东南大学学报(自然科学版),2012,42(4):691.[doi:10.3969/j.issn.1001-0505.2012.04.022]
 Jiang Min,Jin Baosheng,Zhou Yinggui,et al.Numerical simulation of SNCR in a 300MW pulverized-coal boiler[J].Journal of Southeast University (Natural Science Edition),2012,42(2):691.[doi:10.3969/j.issn.1001-0505.2012.04.022]
[4]赵卫,乔玲,韩晓林,等.C/C-SiC复合材料的表面烧蚀模型及数值模拟[J].东南大学学报(自然科学版),2011,41(2):365.[doi:10.3969/j.issn.1001-0505.2011.02.029]
 Zhao Wei,Qiao Ling,Han Xiaolin,et al.Surface ablation model and numerical simulation of C/C-SiC composites[J].Journal of Southeast University (Natural Science Edition),2011,41(2):365.[doi:10.3969/j.issn.1001-0505.2011.02.029]
[5]王晓佳,金保昇,张勇,等.基于铁基载氧体的甲烷化学链燃烧数值模拟[J].东南大学学报(自然科学版),2011,41(3):584.[doi:10.3969/j.issn.1001-0505.2011.03.030]
 Wang Xiaojia,Jin Baosheng,Zhang Yong,et al.Numerical simulation of methane chemical looping combustion with Fe-based oxygen carrier[J].Journal of Southeast University (Natural Science Edition),2011,41(2):584.[doi:10.3969/j.issn.1001-0505.2011.03.030]
[6]胡程耀,黄培.考虑非稳态自然对流的固体溶解过程数值模拟[J].东南大学学报(自然科学版),2011,41(4):799.[doi:10.3969/j.issn.1001-0505.2011.04.027]
 Hu Chengyao,Huang Pei.Numerical simulation of solid dissolution process considering unsteady natural convection[J].Journal of Southeast University (Natural Science Edition),2011,41(2):799.[doi:10.3969/j.issn.1001-0505.2011.04.027]
[7]蔡玫,刘新旺.基于数值模拟的语言计算方法[J].东南大学学报(自然科学版),2011,41(5):1109.[doi:10.3969/j.issn.1001-0505.2011.05.040]
 Cai Mei,Liu Xinwang.An approach to computing with words based on numerical scale[J].Journal of Southeast University (Natural Science Edition),2011,41(2):1109.[doi:10.3969/j.issn.1001-0505.2011.05.040]
[8]张源,杜垲,何嘉鹏,等.建筑构件热阻计算方法[J].东南大学学报(自然科学版),2012,42(1):77.[doi:10.3969/j.issn.1001-0505.2012.01.015]
 Zhang Yuan,Du Kai,He Jiapeng,et al.Calculation methods on thermal resistance of building components[J].Journal of Southeast University (Natural Science Edition),2012,42(2):77.[doi:10.3969/j.issn.1001-0505.2012.01.015]
[9]徐德好,陈陶菲,刘向东,等.板式脉动热管内气液两相流流型演化及传热分析[J].东南大学学报(自然科学版),2011,41(3):558.[doi:10.3969/j.issn.1001-0505.2011.03.025]
 Xu Dehao,Chen Taofei,Liu Xiangdong,et al.Analysis of two-phase flow patterns transition and heat transfer in flat plate loop pulsating heat pipe[J].Journal of Southeast University (Natural Science Edition),2011,41(2):558.[doi:10.3969/j.issn.1001-0505.2011.03.025]
[10]钱振东,刘阳,刘龑.高温浇注环境下钢桥面温度场及温度变形效应分析[J].东南大学学报(自然科学版),2014,44(5):1024.[doi:10.3969/j.issn.1001-0505.2014.05.026]
 Qian Zhendong,Liu Yang,Liu Yan.Temperature field and thermal deformation of steel bridge deck during gussasphalt pavement paving[J].Journal of Southeast University (Natural Science Edition),2014,44(2):1024.[doi:10.3969/j.issn.1001-0505.2014.05.026]

备注/Memo

备注/Memo:
作者简介: 赵红蕾(1984—),女,硕士生; 朱鸣芳(联系人),女,博士,教授,博士生导师,zhumf@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(50671025)、江苏省自然科学基金资助项目(BK2006105)、教育部博士点基金资助项目(20070286021).
引文格式: 赵红蕾,孙东科,潘诗琰,等.强制对流作用下溶质枝晶生长的CA-LBM模拟[J].东南大学学报:自然科学版,2009,39(2):255-261.
更新日期/Last Update: 2009-03-20