[1]秦福德,童明波,何思渊,等.航空航天返回过程的轻质能量吸收器[J].东南大学学报(自然科学版),2009,39(4):790-794.[doi:10.3969/j.issn.1001-0505.2009.04.027]
 Qin Fude,Tong Mingbo,He Siyuan,et al.Light energy absorber in aeronautic and astronautic recovery[J].Journal of Southeast University (Natural Science Edition),2009,39(4):790-794.[doi:10.3969/j.issn.1001-0505.2009.04.027]
点击复制

航空航天返回过程的轻质能量吸收器()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
39
期数:
2009年第4期
页码:
790-794
栏目:
其他
出版日期:
2009-07-20

文章信息/Info

Title:
Light energy absorber in aeronautic and astronautic recovery
作者:
秦福德1 童明波1 何思渊2 张勇明2 何德坪2
1 南京航空航天大学航空宇航学院, 南京 210016; 2 东南大学材料科学与工程学院, 南京 210096
Author(s):
Qin Fude1 Tong Mingbo1 He Siyuan2 Zhang Yongming2 He Deping2
1 College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
2 School of Materials Science and Engineering, Southeast University, Nanjing 210096, China
关键词:
高孔隙率泡沫铝 航空航天 返回着陆 减振 能量吸收器
Keywords:
high porosity Al foam aeronautics and astronautics recovery and landing vibration reduction energy absorber
分类号:
V1;O347
DOI:
10.3969/j.issn.1001-0505.2009.04.027
摘要:
采用精确控制的多种高孔隙率泡沫铝作为轻质能量吸收器,解决航空航天器返回地面及空降、空投着陆瞬间人员和装备的冲击过载问题.研究了轻质能量吸收器在航空航天返回和空降、空投应用中的阻尼减振和能量吸收性能.建立了带轻质能量吸收器的着陆系统与地面撞击的有限元模型,采用非线性动态仿真软件MSC.Dytran进行了仿真计算.在试验台上进行了试件的冲击试验,并将理论计算与试验结果进行了对比分析,两者基本吻合.结果表明:利用高孔隙率泡沫铝作为轻质能量吸收器可以一次降低返回载荷着陆动载超过30g,并可获得较长的塑性变形延时时间以平稳吸收返回载荷冲击能量,从而有效保护人员和设备的安全.
Abstract:
To solve the problem of impact overloads on crew and equipments at the moment when aerospace recovery, airborne and airdrop land on the ground, this paper proposes that the Al foams with precisely controlled high porosities can be used as the material of light energy absorber. Its vibration reduction and energy absorption performance in aerospace recovery or airborne and airdrop are discussed. The finite element model(FEM)of landing system with the light energy absorber impacting the ground was established and the nonlinear dynamic FEM code MSC. Dytran was adopted for simulation calculation. Meanwhile, the impact test was performed at the test platform. The results of the test and the simulation are basically identical. The high porosity Al foam used as light energy absorber can reduce the overload over 30g at one time, and obtain longer delay time of plastic deformation to absorb impact energy of recovery mass smoothly. So it can protect crew and equipment effectively.

参考文献/References:

[1] 郑伟,孙悦年.泡沫铝在航天工程中的应用展望[J].航天器工程,2001,10(3):24-29.
  Zheng Wei,Sun Yuenian.Expectation of AL foam’s application in astronautics engineering[J]. Spacecraft Engineering,2001,10(3):24-29.(in Chinese)
[2] Degischer H P,Kriszt B.多孔泡沫金属[M].左孝青,周芸译.北京:化学工业出版社,2005.
[3] 何思渊,臧晓云,何德坪.轻质能量吸收器[J].中国科学B辑,2005,35(4):265-267.
  He Siyuan,Zang Xiaoyun,He Deping.Light energy absorber[J].Science in China Series B,2005,35(4):265-267.(in Chinese)
[4] Banhart J,Fleck N A,Mortensen A.Cellular metals:manufacture,properties,applications[C] //International Conference on Cellular Metals and Metal Foaming Technology.Berlin:MIT Verlag,2003:1-4.
[5] Ashby M F,Lu T J.Metal foams:a survey[J].Science in China Series B,2003,46(6):521-532.
[6] Gibson L J,Ashby M F.Cellular solids:structure and properties [M].2nd ed.Cambridge,UK:Cambridge University Press,1999.
[7] 何德坪,戴戈,尚金堂.一致性控制泡沫铝或其合金的孔隙率及其均匀性的方法:中国,ZL200410041668.7[P].2005-12-21.
[8] Lu T J,Ong J M.Characterization of close-celled cellular aluminum alloys[J].Journal of Materials Science,2001,36(11):2773-2786.
[9] 郑明军,何德坪.新型高强度胞状铝合金的压缩及能量吸收性能[J].材料研究学报,2002,16(5):473-478.
  Zheng Mingjun,He Deping.Deformation and energy absorption characteristic of high strength cellular Al alloy[J].Chinese Journal of Materials Research,2002,16(5):473-478.(in Chinese)
[10] 曾斐,潘艺,胡时胜.泡沫铝缓冲吸能评估及其特性[J].爆炸与冲击,2002,22(4):358-362.
  Zeng Fei,Pan Yi,Hu Shisheng.Evaluation of cushioning properties and energy-absorption capability of foam aluminum[J]. Explosion and Shock Waves,2002,22(4):358-362.(in Chinese)
[11] Deshpande V S,Fleck N A.High strain rate compressive behaviour of aluminium foam alloy foams[J].International Journal of Impact Engineering,2000,24(3):277-298.
[12] 潘艺,胡时胜,魏志刚.泡沫铝动态力学性能的实验研究[J].材料科学与工程,2002,20(3):341-343.
  Pan Yi,Hu Shisheng,Wei Zhigang.Experimental study on dynamic behavior of foamed aluminum[J]. Materials Science and Engineering,2002,20(3):341-343.(in Chinese)
[13] 何德坪,何思渊,尚金堂.超轻多孔金属的进展与物理学[J].物理学进展,2006,26(3/4):346-350.
  He Deping,He Siyuan,Shang Jintang.Progress in ultra-light porous metal and physics [J]. Progress in Physics,2006, 26(3/4):346-350.(in Chinese)
[14] 黄晶,许希武.飞机壁板结构击穿的数值模拟[J].兵器材料科学与工程,2007,30(2):17-22.
  Huang Jing,Xu Xiwu.Numerical simulations for perforation of aircraft thin plate structures[J].Ordnance Material Science and Engineering,2007,30(2):17-22.(in Chinese)
[15] 何思渊,何德坪,戴戈,等.一种制备具有梯度孔结构闭孔泡沫铝及铝合金制品的方法:中国,ZL200710025129.8[P].2007-12-12.

备注/Memo

备注/Memo:
作者简介: 秦福德(1974—),男,博士生; 何德坪(联系人),男,教授,博士生导师,dphe@seu.edu.cn.
基金项目: 国家重点基础研究发展计划(973计划)资助项目(2006CB601201)、南京航空航天大学博士学位论文创新与培优基金资助项目(BCXJ07-02).
引文格式: 秦福德,童明波,何思渊,等.航空航天返回过程的轻质能量吸收器[J].东南大学学报:自然科学版,2009,39(4):790-794.[doi:10.3969/j.issn.1001-0505.2009.04.027]
更新日期/Last Update: 2009-07-20