[1]余厚云,张为公.基于摄像机模型的运动车辆车道偏离检测[J].东南大学学报(自然科学版),2009,39(5):933-936.[doi:10.3969/j.issn.1001-0505.2009.05.013] 　Yu Houyun,Zhang Weigong.Lane departure detection for moving vehicle based on camera model[J].Journal of Southeast University (Natural Science Edition),2009,39(5):933-936.[doi:10.3969/j.issn.1001-0505.2009.05.013] 点击复制 基于摄像机模型的运动车辆车道偏离检测() 分享到： var jiathis_config = { data_track_clickback: true };

39

2009年第5期

933-936

2009-09-20

文章信息/Info

Title:
Lane departure detection for moving vehicle based on camera model

1 东南大学仪器科学与工程学院, 南京 210096; 2 南京航空航天大学机电学院, 南京 210016
Author(s):
1 School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China
2 School of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Keywords:

TP212.9
DOI:
10.3969/j.issn.1001-0505.2009.05.013

Abstract:
To solve the calibration problem of camera in lane departure detection, the imaging model is analyzed and the installing position of camera can be adjusted according to the slope and vanishing point of three or more lane lines in the image. At the same time, external parameters of the camera are directly set without complicated calibration. Based on this, the relationship between lane departure and the ratio of lane line’s slope is concluded as a simple function which is unconcerned with the parameters of camera. Therefore, the quantity of lane departure can be calculated so far as this ratio is measured. Actual experiment result demonstrates that the precision of lane departure detection by this method is high, and the relative error is less than 5% compared with manual measurement.

参考文献/References:

[1] Jung Cláudio Rosito,Kelber Christian Roberto.Lane following and lane departure using a linear-parabolic model[J].Image and Vision Computing,2005,23(13):1192-1202.
[2] Lee Joon Woong,Yi Un Kun.A lane-departure identification based on LBPE,hough transform,and linear regression[J]. Computer Vision and Image Understanding,2005,99(3):359-383.
[3] 李旭,张为公.基于视觉的车道偏离报警系统的研究[J].仪器仪表学报,2008,29(7):1554-1558.
Li Xu,Zhang Weigong.Research on lane departure warning system based on machine vision[J]. Chinese Journal of Scientific Instrument,2008,29(7):1554-1558.(in Chinese)
[4] Lin Chechung,Lin Chiwei,Huang Dauchen,et al.Design a support vector machine-based intelligent system for vehicle driving safety warning[C] //Proceedings of the 11th International IEEE Conference on Intelligent Transportation Systems.Beijing,China,2008:938-943.
[5] Osama Masoud,Nikolaos P Papanikolopoulos.Using geometric primitives to calibrate traffic scenes[C] //Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems.Sendai,Japan,2004:1878-1883.
[6] 李旭,张为公.基于视觉的智能车辆横向偏差测量方法[J].东南大学学报:自然科学版,2007,37(1):63-68.
Li Xu,Zhang Weigong.Measurement method of intelligent vehicle’s lateral deviation error based on vision[J].Journal of Southeast University:Natural Science Edition,2007,37(1):63-68.(in Chinese)
[7] Broggi Alberto,Bertozzi Massimo,Fascioli Alessandra.Self-calibration of a stereo vision system for automotive applications[C] //Proceedings of the 2001 IEEE International Conference on Robotics & Automation.Seoul,Korea,2001:3698-3703.
[8] 李青,郑南宁,张雪涛.用三线法标定车载摄像机的外部参数[J].光电工程,2004,31(8):23-26.
Li Qing,Zheng Nanning,Zhang Xuetao.Calibration of external parameters of vehicle-mounted camera with trilinear method[J].Opto-Electronic Engineering,2004,31(8):23-26.(in Chinese)
[9] Jeong Seung Gweon,Kim Chang Sup,Yoon Kang Sup,et al.Real-time lane detection for autonomous navigation[C] //Proceedings of the 2001 IEEE International Conference on Intelligent Transportation Systems.Oakland,CA,USA,2001:508-513.
[10] 马颂德,张正友.计算机视觉:计算理论与算法基础[M].北京:科学出版社,1997.

相似文献/References:

[1]李旭,张为公.基于视觉的智能车辆横向偏差测量方法[J].东南大学学报(自然科学版),2007,37(1):45.[doi:10.3969/j.issn.1001-0505.2007.01.011]
Li Xu,Zhang Weigong.Measurement method of intelligent vehicle’s lateral deviation error based on vision[J].Journal of Southeast University (Natural Science Edition),2007,37(5):45.[doi:10.3969/j.issn.1001-0505.2007.01.011]