[1]魏志勇,毕可东,陈云飞.石墨烯纳米带热导率的分子动力学模拟[J].东南大学学报(自然科学版),2010,40(2):306-310.[doi:10.3969/j.issn.1001-0505.2010.02.017]
 Wei Zhiyong,Bi Kedong,Chen Yunfei.Thermal conductivity of graphene nanoribbons simulated by molecular dynamics[J].Journal of Southeast University (Natural Science Edition),2010,40(2):306-310.[doi:10.3969/j.issn.1001-0505.2010.02.017]
点击复制

石墨烯纳米带热导率的分子动力学模拟()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
40
期数:
2010年第2期
页码:
306-310
栏目:
能源与动力工程
出版日期:
2010-03-20

文章信息/Info

Title:
Thermal conductivity of graphene nanoribbons simulated by molecular dynamics
作者:
魏志勇12 毕可东12 陈云飞123
1 东南大学机械工程学院,南京 210096; 2 东南大学江苏省微纳生物医疗器械设计与制造重点实验室,南京 210096; 3 东南大学MEMS教育部重点实验室,南京 210096
Author(s):
Wei Zhiyong12 Bi Kedong12 Chen Yunfei123
1 School of Mechanical Engineering, Southeast University, Nanjing 210096, China
2 Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 210096, China
3
关键词:
石墨烯纳米带 分子动力学 热导率
Keywords:
graphene nanoribbons molecular dynamics thermal conductivity
分类号:
TK124
DOI:
10.3969/j.issn.1001-0505.2010.02.017
摘要:
采用非平衡态分子动力学方法研究了石墨烯纳米带的热导率随温度变化的关系.通过在纳米带长度方向上施加周期性边界条件,利用Tersoff作用势和Fourier定律计算热导率.由于模拟尺寸较小时热导率随纳米带长度的增加而单调增加,为了减小长度对石墨烯纳米带热导率的影响,采用倒数拟合的方法消除了尺寸效应.模拟结果表明,石墨烯纳米带热导率随温度升高逐渐减小,这与高温下Umklapp散射作用的增强有关.结果还表明,在实际宽度近似相等的条件下,锯齿形纳米带的热导率明显高于扶手椅形,且对相同类型的纳米带,其热导率随宽度的增加而增加,表明纳米带的手性和宽度是影响石墨烯纳米带导热性能的重要参数.
Abstract:
The nonequilibrium molecular dynamics simulations are employed to investigate the temperature-dependent thermal conductivity of graphene nanoribbons. Periodic boundary conditions are applied along their length direction and the thermal conductivity can be deduced from Fourier law and the Tersoff potential. Since the thermal conductivity increases with the increase of the length when the simulated size is small, an inverse fitting method is employed to remove the intrinsic size effects on the simulation results. The simulations show that the thermal conductivities decrease monotonously with the increase of the temperature, which is attributed to the Umklapp scattering at high temperatures. The results also demonstrate that zig-zag nanoribbons have larger thermal conductivities compared with the arm-chair nanoribbons and the thermal conductivities for both types of nanoribbons increase with the ribbon width, indicating that the edge chirality and the width of nanoribbons are important parameters to determine the thermal property of graphene nanoribbons.

参考文献/References:

[1] Novoselov K S,Geim A K,Morozov S V,et al.Electric field effect in atomically thin carbon films [J].Science, 2004,306(5296):666-669.
[2] Zhou J,Huang R.Internal lattice relaxation of single-layer graphene under in-plane deformation [J].Journal of the Mechanics and Physics of Solids, 2008,56(4):1609-1623.
[3] Novoselov K S,Geim A K,Morozov S V,et al.Two-dimensional gas of massless Dirac fermions in graphene[J].Nature, 2005,438(7065):197-200.
[4] Zhang Y B,Tan Y W,Strormer H L,et al.Experimental observation of the quantum Hall effect and Berry’s phase in graphene [J].Nature,2005,438(7065):201-204.
[5] Geim A K,Novoselov K S.The rise of graphene[J].Nature Materials, 2007,6(3):183-191.
[6] Klemens P G.Theory of the a-plane thermal conductivity of graphite [J].Journal of Wide Bandgap Materials, 2000,7(4):332-339.
[7] Balandin A A,Ghosh S,Bao W Z,et al.Superior thermal conductivity of single-layer graphene[J].Nano Letters, 2008,8(3):902-907.
[8] Shi L P,Xiong S J.Phonon thermal conductance of disordered graphene strips with armchair edges [J].Physics Letters A, 2009,373(5):563-569.
[9] Lan J,Wang J,Gan C,et al.Edge effects on quantum thermal transport in graphene nanoribbons:tight-binding calculations[J].Physical Review B, 2009,79(11):115401.
[10] Shao Q,Liu G,Teweldebrhan D,et al.High-temperature quenching of electrical resistance in graphene interconnects [J].Applied Physics Letters, 2008,92(20):202108.
[11] Murali R,Yang Y X,Brenner K,et al.Breakdown current density of graphene nanoribbons [J].Applied Physics Letters, 2009,94(24):243114.
[12] Nika D L,Pokatilov E P,Askerov A S,et al.Phonon thermal conduction in graphene:role of Umklapp and edge roughness scattering [J].Physical Review B, 2009,79(15):155413.
[13] Jiang J W,Wang J S,Li B W.Thermal conductance of graphene and dimerite[J].Physical Review B, 2009,79(20):205418.
[14] Nakada K,Fujita M,Dresselhaus G,et al.Edge state in graphene ribbons:nanometer size effect and edge shape dependence [J].Physical Review B, 1996,54(24):17954-17961.
[15] Schelling P K,Phillpot S R,Keblinski P.Comparison of atomic-level simulation methods for computing thermal conductivity[J].Physical Review B, 2002,65(14):144306.
[16] Tersoff J.Empirical interatomic potential for carbon,with applications to amorphous carbon [J].Physical Review Letters, 1988,61(25):2879-2882.
[17] Tersoff J.New empirical approach for the structure and energy of covalent systems[J].Physical Review B, 1988,37(12):6991-7000.
[18] Ghosh S,Calizo I,Teweldebrhan D,et al.Extremely high thermal conductivity of graphene:prospects for thermal management applications in nanoelectronic circuits [J].Applied Physics Letters, 2008,92(15):151911.

相似文献/References:

[1]杨决宽,唐明兵,钱瑞明,等.晶格失配对超晶格法向导热系数影响的分子动力学模拟[J].东南大学学报(自然科学版),2006,36(3):427.[doi:10.3969/j.issn.1001-0505.2006.03.020]
 Yang Juekuan,Tang Mingbing,Qian Ruiming,et al.Molecular dynamics simulation of the influence of lattice mismatch on cross-plane superlattice thermal conductivity[J].Journal of Southeast University (Natural Science Edition),2006,36(2):427.[doi:10.3969/j.issn.1001-0505.2006.03.020]
[2]毕可东,陈云飞,王玉娟,等.金刚石导热系数的各向同性分子动力学模拟[J].东南大学学报(自然科学版),2010,40(4):746.[doi:10.3969/j.issn.1001-0505.2010.04.016]
 Bi Kedong,Chen Yunfei,Wang Yujuan,et al.Homogeneous molecular dynamics simulation of thermal conductivity of diamond[J].Journal of Southeast University (Natural Science Edition),2010,40(2):746.[doi:10.3969/j.issn.1001-0505.2010.04.016]
[3]陈慧,陈云飞,陈敏华,等.填充氩后单壁碳纳米管的导热系数[J].东南大学学报(自然科学版),2006,36(3):416.[doi:10.3969/j.issn.1001-0505.2006.03.017]
 Chen Hui,Chen Yunfei,Chen Minhua,et al.Thermal conductivity of single-wall carbon nanotubes filled with argon[J].Journal of Southeast University (Natural Science Edition),2006,36(2):416.[doi:10.3969/j.issn.1001-0505.2006.03.017]
[4]毕可东,陈云飞,杨决宽,等.不同结构单壁碳纳米管热传导的分子动力学模拟[J].东南大学学报(自然科学版),2006,36(3):420.[doi:10.3969/j.issn.1001-0505.2006.03.018]
 Bi Kedong,Chen Yunfei,Yang Juekuan,et al.Molecular dynamics simulation of thermal conductivity of single-wall carbon nanotubes with different structures[J].Journal of Southeast University (Natural Science Edition),2006,36(2):420.[doi:10.3969/j.issn.1001-0505.2006.03.018]
[5]杨决宽,陈云飞,颜景平.超薄氩膜热传导的分子动力学模拟[J].东南大学学报(自然科学版),2003,33(3):303.[doi:10.3969/j.issn.1001-0505.2003.03.014]
 Yang Juekuan,Chen Yunfei,Yan Jingping.Molecular dynamics simulation of thermal conductivity of argon thin film[J].Journal of Southeast University (Natural Science Edition),2003,33(2):303.[doi:10.3969/j.issn.1001-0505.2003.03.014]
[6]张潇丹,包永强,奚吉,等.基于MD-CM-SFLA神经网络的耳语音情感识别[J].东南大学学报(自然科学版),2012,42(5):848.[doi:10.3969/j.issn.1001-0505.2012.05.010]
 Zhang Xiaodan,Bao Yongqiang,Xi Ji,et al.Whispered speech emotion recognition based on MD-CM-SFLA neural network[J].Journal of Southeast University (Natural Science Edition),2012,42(2):848.[doi:10.3969/j.issn.1001-0505.2012.05.010]
[7]陈慧,魏志勇,陈伟宇,等.掺杂硅纳米薄膜法向热导率的分子动力学模拟[J].东南大学学报(自然科学版),2017,47(3):490.[doi:10.3969/j.issn.1001-0505.2017.03.013]
 Chen Hui,Wei Zhiyong,et al.Molecular dynamics simulation of out-of-plane thermal conductivity of doped silicon nanofilms[J].Journal of Southeast University (Natural Science Edition),2017,47(2):490.[doi:10.3969/j.issn.1001-0505.2017.03.013]
[8]陈俊,殷小晶,张倩倩,等.沥青内金属离子的水污特征及组分扩散的分子动力学模拟[J].东南大学学报(自然科学版),2017,47(4):799.[doi:10.3969/j.issn.1001-0505.2017.04.026]
 Chen Jun,Yin Xiaojing,Zhang Qianqian,et al.Water quality degradation due to metal in asphalt and molecular dynamics simulation on SARA fraction diffusion[J].Journal of Southeast University (Natural Science Edition),2017,47(2):799.[doi:10.3969/j.issn.1001-0505.2017.04.026]

备注/Memo

备注/Memo:
作者简介: 魏志勇(1984—),男,博士生; 陈云飞(联系人),男,博士,教授,博士生导师, yunfeichen@seu.edu.cn.
基金项目: 国家重点基础研究发展计划(973计划)资助项目(2006CB300404)、国家自然科学基金资助项目(508765047,50676019)、江苏省自然科学基金资助项目(BK2006510).
引文格式: 魏志勇,毕可东,陈云飞.石墨烯纳米带热导率的分子动力学模拟[J].东南大学学报:自然科学版,2010,40(2):306-310. [doi:10.3969/j.issn.1001-0505.2010.02.017]
更新日期/Last Update: 2010-03-20