[1]滕军,卢伟.基于多类型传感器信息的结构损伤识别方法[J].东南大学学报(自然科学版),2010,40(3):538-542.[doi:10.3969/j.issn.1001-0505.2010.03.020]
 Teng Jun,Lu Wei.Structural damage identification method based on multi-type sensors[J].Journal of Southeast University (Natural Science Edition),2010,40(3):538-542.[doi:10.3969/j.issn.1001-0505.2010.03.020]
点击复制

基于多类型传感器信息的结构损伤识别方法()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
40
期数:
2010年第3期
页码:
538-542
栏目:
土木工程
出版日期:
2010-05-20

文章信息/Info

Title:
Structural damage identification method based on multi-type sensors
作者:
滕军 卢伟
哈尔滨工业大学深圳研究生院, 深圳 518055
Author(s):
Teng Jun Lu Wei
Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, China
关键词:
结构健康监测 损伤识别 数据融合 神经网络 D-S证据理论
Keywords:
structural health monitoring damage identification data fusion neural network D-S evidence theory
分类号:
TU393.3
DOI:
10.3969/j.issn.1001-0505.2010.03.020
摘要:
计算2组基于径向基神经网络的结构损伤程度识别结果,一组神经网络输入是加速度传感器信息,另一组神经网络输入是应变传感器信息; 以2组识别结果及其可靠性为基础,提出采用D-S证据理论数据融合方法的结构损伤程度综合识别方法.以网壳结构为研究对象,建立结构损伤模型和神经网络样本库及输入输出向量,并对不同噪声水平下结构损伤程度识别结果进行计算.计算结果显示,基于多类型传感器信息的结构损伤程度综合识别结果的误差明显小于基于单类型传感器的识别结果,并在神经网络输入有噪声的情况下,仍保持较好的效果.因此,基于多类型传感器信息的结构损伤程度识别方法在合理应用结构多类型响应信息的基础上,能够获得更优的结构损伤程度识别结果.
Abstract:
Two groups of structural damage extent identification results based on neural networks are calculated, the inputs of which are acceleration sensor information and strain sensor information respectively; the structural damage extent identification results using D-S evidence theory data fusion is described based on the two groups of identification results mentioned above and their reliability. A shell structure is used to explain the method. The structural damage models are established. The samples for neural networks and the input and output vectors are chosen. The structural damage extent identification results are calculated at different noise levels. It can be known from the calculation results that the error of structural damage extent identification based on multi-type sensors is less than that based on single-type sensor; the same result can be obtained with the inputs under different noise levels. So the structural damage extent identification method based on multi-type sensors can obtain much better results than the method based on single-type sensors.

参考文献/References:

[1] Humar J,Bagchi A,Xu H P.Performance of vibration-based techniques for the identification of structural damage [J]. Structural Health Monitoring,2006,5(3):215-227.
[2] Khoo L M,Mantena P R,Jadhav P.Structural damage assessment using vibration modal analysis [J]. Structural Health Monitoring,2004,3(2):177-194.
[3] Schulz M J,Ghoshal A,Sundaresan M J,et al.Theory of damage detection using constrained vibration deflection shapes [J]. Structural Health Monitoring,2003,2(1):75-99.
[4] Jose L Z,Maria P G.Numerical simulation of a method for seismic damage identification in buildings [J]. Engineering Structures,2006, 28(2):255-263.
[5] Yeung W T,Smith J W.Damage detection in bridges using neural networks for pattern recognition of vibration signatures [J]. Engineering Structures,2005,27(5):685-698.
[6] Chang P C,Flatau A,Liu S C.Review paper:health monitoring of civil infrastructure [J].Structural Health Monitoring,2003,2(3):257-267.
[7] Cardini A J,Dewolf J T.Long-term structural health monitoring of a multi-girder steel composite bridge using strain data [J]. Structural Health Monitoring,2009,8(1):47-58.
[8] Liu T,Li A Q,Ding Y L,et al.Structural damage detection method based on information fusion technique[J]. Journal of Southeast University:English Edition,2008,24(2):201-205.
[9] 蒋正新,施国梁.矩阵理论及其应用[M].北京:北京航空学院出版社,1988:371-378.
[10] 董长虹.Matlab 神经网络与应用[M].2版.北京:国防工业出版社,2007:129-142.
[11] Lawrence A K. Sensor and data fusion [M].Washington DC,USA:SPIE Press,2007:51-149.

相似文献/References:

[1]丁幼亮,王晓晶,王高新,等.珠江黄埔大桥钢箱梁温度长期监测与分析[J].东南大学学报(自然科学版),2012,42(5):945.[doi:10.3969/j.issn.1001-0505.2012.05.027]
 Ding Youliang,Wang Xiaojing,Wang Gaoxin,et al.Long-term temperature monitoring and analysis of steel box girders of Pearl River Huangpu Bridge[J].Journal of Southeast University (Natural Science Edition),2012,42(3):945.[doi:10.3969/j.issn.1001-0505.2012.05.027]
[2]孙正华,李兆霞,陈鸿天.结构行为一致多尺度有限元模型修正及验证[J].东南大学学报(自然科学版),2009,39(1):85.[doi:10.3969/j.issn.1001-0505.2009.01.016]
 Sun Zhenghua,Li Zhaoxia,Chan Hungtin Tommy.Updating and verification for multi-scale finite element model of structure behavior[J].Journal of Southeast University (Natural Science Edition),2009,39(3):85.[doi:10.3969/j.issn.1001-0505.2009.01.016]
[3]缪长青,李爱群,韩晓林,等.润扬大桥结构健康监测策略[J].东南大学学报(自然科学版),2005,35(5):780.[doi:10.3969/j.issn.1001-0505.2005.05.027]
 Miao Changqing,Li Aiqun,Han Xiaolin,et al.Monitor strategy for the structural health monitoring system of Runyang Bridge[J].Journal of Southeast University (Natural Science Edition),2005,35(3):780.[doi:10.3969/j.issn.1001-0505.2005.05.027]
[4]邓扬,李爱群,丁幼亮,等.基于长期监测数据的大跨桥梁结构伸缩缝损伤识别[J].东南大学学报(自然科学版),2011,41(2):336.[doi:10.3969/j.issn.1001-0505.2011.02.024]
 Deng Yang,Li Aiqun,Ding Youliang,et al.Damage identification of expansion joints in long span bridge using long-term monitoring data[J].Journal of Southeast University (Natural Science Edition),2011,41(3):336.[doi:10.3969/j.issn.1001-0505.2011.02.024]
[5]丁幼亮,李爱群,耿方方.考虑环境因素影响的悬索桥整体状态预警方法[J].东南大学学报(自然科学版),2010,40(5):1052.[doi:10.3969/j.issn.1001-0505.2010.05.032]
 Ding Youliang,Li Aiqun,Geng Fangfang.Monitoring and warning of health conditions for suspension bridges under varying environmental conditions[J].Journal of Southeast University (Natural Science Edition),2010,40(3):1052.[doi:10.3969/j.issn.1001-0505.2010.05.032]
[6]吴佰建,李兆霞,王滢,等.桥梁结构动态应变监测信息的分离与提取[J].东南大学学报(自然科学版),2008,38(5):767.[doi:10.3969/j.issn.1001-0505.2008.05.006]
 Wu Baijian,Li Zhaoxia,Wang Ying,et al.Separation and extraction of bridge dynamic strain data[J].Journal of Southeast University (Natural Science Edition),2008,38(3):767.[doi:10.3969/j.issn.1001-0505.2008.05.006]
[7]周广东,等.基于实测数据的润扬大桥悬索桥全寿命评估随机温度场模拟[J].东南大学学报(自然科学版),2013,43(5):912.[doi:10.3969/j.issn.1001-0505.2013.05.002]
 Zhou Guangdong,Li Aiqun,et al.Simulation of stochastic temperature field for Runyang suspension bridge life-cycle evaluation based on monitoring data[J].Journal of Southeast University (Natural Science Edition),2013,43(3):912.[doi:10.3969/j.issn.1001-0505.2013.05.002]
[8]钟儒勉,宗周红,谢炼,等.基于参数离散化的梁式桥损伤识别方法[J].东南大学学报(自然科学版),2014,44(5):1017.[doi:10.3969/j.issn.1001-0505.2014.05.025]
 Zhong Rumian,Zong Zhouhong,Xie Lian,et al.Damage identification method of girder bridge based on parameter discretization[J].Journal of Southeast University (Natural Science Edition),2014,44(3):1017.[doi:10.3969/j.issn.1001-0505.2014.05.025]
[9]黄兴淮,徐赵东,Dyke Shirley.基于能量原理和Kalman滤波器的实时模型修正策略[J].东南大学学报(自然科学版),2015,45(3):539.[doi:10.3969/j.issn.1001-0505.2015.03.022]
 Huang Xinghuai,Xu Zhaodong,Dyke Shirley.In-time model updating strategy based on energy theory and Kalman filter[J].Journal of Southeast University (Natural Science Edition),2015,45(3):539.[doi:10.3969/j.issn.1001-0505.2015.03.022]
[10]丁幼亮,王超,王景全,等.高速铁路钢桁拱桥吊杆振动长期监测与分析[J].东南大学学报(自然科学版),2016,46(4):848.[doi:10.3969/j.issn.1001-0505.2016.04.029]
 Ding Youliang,Wang Chao,Wang Jingquan,et al.Long-term monitoring and analysis of hanger vibration on high-speed railway steel truss arch bridge[J].Journal of Southeast University (Natural Science Edition),2016,46(3):848.[doi:10.3969/j.issn.1001-0505.2016.04.029]

备注/Memo

备注/Memo:
作者简介: 滕军(1962—),男,博士,教授,博士生导师,tengj@hit.edu.cn.
基金项目: 国家自然科学基金资助项目(50678052).
引文格式: 滕军,卢伟.基于多类型传感器信息的结构损伤识别方法[J].东南大学学报:自然科学版,2010,40(3):538-542. [doi:10.3969/j.issn.1001-0505.2010.03.020]
更新日期/Last Update: 2010-05-20