[1]胡文,包伯成,张弓,等.基于混沌同步的线性卷积系统辨识[J].东南大学学报(自然科学版),2010,40(6):1140-1145.[doi:10.3969/j.issn.1001-0505.2010.06.003]
 Hu Wen,Bao Bocheng,et al.Chaos synchronization based linear convolution systems identification[J].Journal of Southeast University (Natural Science Edition),2010,40(6):1140-1145.[doi:10.3969/j.issn.1001-0505.2010.06.003]
点击复制

基于混沌同步的线性卷积系统辨识()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
40
期数:
2010年第6期
页码:
1140-1145
栏目:
信息与通信工程
出版日期:
2010-11-20

文章信息/Info

Title:
Chaos synchronization based linear convolution systems identification
作者:
胡文12 包伯成3 张弓1 刘贤龙2 王俊波14
1 南京航空航天大学信息科学与技术学院,南京 210016; 2 长江电子信息产业集团有限公司,南京 210037; 3 江苏技术师范学院电气信息工程学院,常州 213001; 4 东南大学移动通信国家重点实验室,南京 210096
Author(s):
Hu Wen1 2 Bao Bocheng3 Zhang Gong1 Liu Xianlong2 Wang Junbo14
1 College of Information Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
2 Nanjing Changjiang Electronics Group Co., Ltd, Nanjing 210037, China
3 School of Electrical and Information Engineering, Jiangsu Teachers University of Technology, Changzhou 213001, China
4 National Mobile Communications Research Laboratory,Southeast University, Nanjing 210096, China
关键词:
混沌 同步 系统辨识
Keywords:
chaos synchronization system identification
分类号:
X502
DOI:
10.3969/j.issn.1001-0505.2010.06.003
摘要:
研究了分段线性连续混沌信号驱动的线性卷积系统的盲辨识问题,提出了基于混沌同步的线性卷积系统辨识方法.借助线性矩阵不等式,利用混沌同步系统构造了基于最小二乘的观测器,并设计自适应算法最小化观测器,从而估计出线性卷积系统的参数.以简单的分段线性混沌系统为例,进行了仿真分析.数值仿真结果与理论分析一致,表明了所提出的算法能正确辨识系统,且算法仅需十几次迭代就能收敛.与传统Bussgang算法相比,所提算法具有更好的噪声鲁棒性,在输入信噪比15dB时,输出信噪比较Bussgang算法高约10dB,且在输入信噪比为0dB时仍有5dB的输出信噪比.
Abstract:
The blind identification of linear convolution systems driven by a piecewise linear continuous chaotic signal was researched, and a chaos synchronization based identification approach for linear convolution systems is proposed. By utilizing linear matrix inequality(LMI)and chaos synchronization systems, a least square based observer was constructed and minimized by an adaptive algorithm to estimate the parameter of linear convolution systems. A simple piecewise linear chaotic system was used in simulation analysis. The numerical simulation results are consistent with theoretical analysis results, which demonstrate that the proposed approach can identify the convolution systems. And the proposed approach converges only after about ten iterations. The proposed approach is more robust than the traditional Bussgang algorithm. When input SNR is 15dB, the output SNR(signal to noise ratio)of the proposed approach is 10dB higher than that of the Bussgang algorithm. And even when imput SNR in 0dB the proposed approach has output SNR of 5dB.

参考文献/References:

[1] 王海燕,盛昭瀚.混沌时间序列相空间重构参数的选取方法[J].东南大学学报:自然科学版,2000,30(5):113-117.
  Wang Haiyan,Sheng Zhaohan.Choice of the phase space reconstruction of chaotic time series[J].Journal of Southeast University:Natural Science Edition,2000,30(5):113-117.(in Chinese)
[2] 闵富红,单梁,王执铨.分数阶Qi混沌系统投影同步和电路实现[J].东南大学学报:自然科学版,2009,39(S1):157-162.
  Min Fuhong,Shan Liang,Wang Zhiquan.Circuit implementation and project synchronization of fractional-order Qi chaotic systems[J].Journal of Southeast University:Natural Science Edition,2009,39(S1):157-162.(in Chinese)
[3] Wang X Y,Meng J.Adaptive projective synchronization and parameter identification of Takagi-Sygeno fuzzy hyperchaotic systems[J].Acta Phys Sin,2009,58(6):3780-3786.
[4] Wang C N,Ma J,Chu R T,et al.Synchronization and parameter identification of one class of realistic chaotic circuit[J].Chinese Physics B,2009,18(9):3766-3771.
[5] Chen S H,Zhao L M,Liu J.Parameter identification and synchronization of an uncertain Chen chaotic system via adaptive control[J].Chinese Physics B,2002,11(6):543-546.
[6] Rigling B D.Adaptive noise radar for simultaneous bistatic SAR and GMTI[C] //Proceedings of SPIE:Algorithms for Synchetic Aperture Radar Imagery XII.Bellingham:SPIE,2005,5808:166-177.
[7] Rigling B D.Adaptive filtering for air-to-ground surveillance[C] //Proceedings of SPIE:Algorithms for Synthetic Aperture Radar Imagery XI.Bellingham:SPIE,2004,5427:53-61.
[8] Abed-Meraim K,Qiu W,Hua Y.Blind system identification[EB/OL].(1997)[2010-08-04].http://www.scientificcommons.org/42928495.
[9] Abed-Meraim K,Moulines E,Loubaton P.Prediction error method for second-order blind identification[J].IEEE Transactions on Signal Processing,1997,45(3):694-705.
[10] Tugnait J K.Blind estimation of digital communication channel impulse response[J].IEEE Transactions on Communications,1994,42(3):1606-1616.
[11] Xie N,Leung H.Blind identification of autoregressive system using chaos[J].IEEE Transactions on Circuits and Systems Part1:Regular Papers,2005,52(9):1953-1964.
[12] Zhu Z,Leung H.Identification of linear systems driven by chaotic signals using nonlinear prediction[J].IEEE Transactions on Circuits and Systems-Ⅰ:Fundamental Theory and Applications,2002,49(2):170-180.
[13] Leung H.System identification using chaos with application to equalization of a chaotic modulation system[J].IEEE Transactions on Circuits and Systems-Ⅰ:Fundamental Theory and Applications,1998,45(3):314-320.
[14] Chua L O,Wu C W,Huang A,et al.A universal circuit for studying and generating chaos-part Ⅰ:routes to chaos[J].IEEE Transactions on Circuits and Systems-Ⅰ:Fundamental Theory and Applications,1993,40(10):732-744.
[15] Bao B C,Liu Z,Xu J P,et al.Generation of multi-scroll hyperchaotic attractor based on Colpitts oscillator model[J].Acta Phys Sin,2010,59(3):1540-1548.
[16] Zhang C X,Yu S M.Generation of grid multi-scroll Chua’s chaotic attractors with combination of hysteresis and step series[J].Acta Phys Sin,2009,58(1):120-130.
[17] Zhang C X,Yu S M.Design and implementation of a novel multi-scroll chaotic system[J].Chinese Physics B,2009,18(1):119-129.
[18] Elwakil A S,Salama K N,Kennedy M P.A system for chaos generation and its implementation in monolithic form[EB/OL].(2001)[2010-08-04].http://www.ecse.rpi.edu/~khaled/papers/iscas00.pdf.
[19] Arena P,Buscarino A,Fortuna L,et al.Separation and synchronization of piecewise linear chaotic systems[J].Physical Review E,2006,74(2):026212.
[20] Hu W,Liu Z.Partially blind separation of continuous chaotic signals from linear mixture[J].IET Signal Processing,2008,2(4):424-430.
[21] 海韦里恩 A,卡亨南 J,奥哈 E.独立成分分析[M].周宗潭,等译.北京:电子工业出版社,2007.

相似文献/References:

[1]蒋珉,王廷平,严洪森.含有限缓冲区的多生产线协调生产计划的研究[J].东南大学学报(自然科学版),2004,34(5):632.[doi:10.3969/j.issn.1001-0505.2004.05.016]
 Jiang Min,Wang Tingping,Yan Hongsen.Study of harmonious production planning for multiple production lines with limited buffers[J].Journal of Southeast University (Natural Science Edition),2004,34(6):632.[doi:10.3969/j.issn.1001-0505.2004.05.016]
[2]应鹏魁,吴乐南.一种新的MPPSK调制解调器实现结构[J].东南大学学报(自然科学版),2012,42(2):204.[doi:10.3969/j.issn.1001-0505.2012.02.002]
 Ying Pengkui,Wu Lenan.New scheme of MPPSK modem[J].Journal of Southeast University (Natural Science Edition),2012,42(6):204.[doi:10.3969/j.issn.1001-0505.2012.02.002]
[3]郝玉峰,王俊生,孙啸.一组混沌保密通信系统的理论探讨[J].东南大学学报(自然科学版),2000,30(3):31.[doi:10.3969/j.issn.1001-0505.2000.03.007]
 Hao Yufeng,Wang Junsheng,Sun Xiao.A Group of Chaotic Systems for Secure Communicaion[J].Journal of Southeast University (Natural Science Edition),2000,30(6):31.[doi:10.3969/j.issn.1001-0505.2000.03.007]
[4]黄晨,陈龙,袁朝春,等.模型参数摄动下的车辆侧向动力学混沌研究[J].东南大学学报(自然科学版),2012,42(6):1111.[doi:10.3969/j.issn.1001-0505.2012.06.017]
 Huang Chen,Chen Long,Yuan Chaochun,et al.Chaos study of vehicle lateral dynamics based on perturbation parameter[J].Journal of Southeast University (Natural Science Edition),2012,42(6):1111.[doi:10.3969/j.issn.1001-0505.2012.06.017]
[5]陈阳.新的独立性度量及其在混沌信号分析中的应用[J].东南大学学报(自然科学版),2003,33(1):13.[doi:10.3969/j.issn.1001-0505.2003.01.004]
 Chen Yang.New independence measures and its application to chaotic signal analysis[J].Journal of Southeast University (Natural Science Edition),2003,33(6):13.[doi:10.3969/j.issn.1001-0505.2003.01.004]
[6]张毅锋,何振亚.一维双向耦合映象网络及其应用[J].东南大学学报(自然科学版),1998,28(1):12.[doi:10.3969/j.issn.1001-0505.1998.01.003]
 Zhang Yifeng,He Zhenya.One Dimensional Two Way Coupled Map Network With Applications[J].Journal of Southeast University (Natural Science Edition),1998,28(6):12.[doi:10.3969/j.issn.1001-0505.1998.01.003]
[7]卢宏涛,何振亚.用非反馈法控制非自治细胞神经网络中的混沌[J].东南大学学报(自然科学版),1996,26(4):8.[doi:10.3969/j.issn.1001-0505.1996.04.002]
 Lu Hongtao,He Zhenya.Using Nonfeedback Method to Control Chaos in Nonautonomous Cellular Neural Networks[J].Journal of Southeast University (Natural Science Edition),1996,26(6):8.[doi:10.3969/j.issn.1001-0505.1996.04.002]
[8]颜森林.双环掺铒光纤激光器混沌反相位相移同步控制[J].东南大学学报(自然科学版),2004,34(5):578.[doi:10.3969/j.issn.1001-0505.2004.05.004]
 Yan Senlin.Study on controlling chaos synchronization by reverse-phase-shift in dual-ring erbium-doped fiber lasers[J].Journal of Southeast University (Natural Science Edition),2004,34(6):578.[doi:10.3969/j.issn.1001-0505.2004.05.004]

备注/Memo

备注/Memo:
作者简介: 胡文(1979—),男,博士,讲师,huwen@nuaa.edu.cn.
基金项目: 航空科学基金资助项目(2009ZC52038, 2008ZC52026)、南京航空航天大学基本科研业务费专项科研资助项目(NS2010096)、江苏省自然科学基金资助项目(BK2009105)、东南大学移动通信国家重点实验室开放研究基金资助项目(2010D01)、东南大学移动通信国家重点实验室研究基金资助项目(2010A06)、区域光纤通信网与新型光通信系统国家重点实验室开放课题资助项目(2008SH06)、国家自然科学基金项目资助项目(60972023)、国家科技重大专项资助项目(2010ZX03003-002, 2010ZX03003-004)、南京航空航天大学科研启动基金资助项目.
引文格式: 胡文,包伯成,张弓,等.基于混沌同步的线性卷积系统辨识[J].东南大学学报:自然科学版,2010,40(6):1140-1145. [doi:10.3969/j.issn.1001-0505.2010.06.003]
更新日期/Last Update: 2010-11-20