[1]孙国文,孙伟,张云升,等.预测氯离子在水泥基复合材料中有效扩散系数[J].东南大学学报(自然科学版),2011,41(2):376-381.[doi:10.3969/j.issn.1001-0505.2011.02.031]
 Sun Guowen,Sun Wei,Zhang Yunsheng,et al.Predicting effective chloride ion diffusion coefficient in cement-based composite materials[J].Journal of Southeast University (Natural Science Edition),2011,41(2):376-381.[doi:10.3969/j.issn.1001-0505.2011.02.031]
点击复制

预测氯离子在水泥基复合材料中有效扩散系数()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
41
期数:
2011年第2期
页码:
376-381
栏目:
材料科学与工程
出版日期:
2011-03-20

文章信息/Info

Title:
Predicting effective chloride ion diffusion coefficient in cement-based composite materials
作者:
孙国文孙伟张云升刘志勇王彩辉
(东南大学江苏省土木工程材料重点实验室,南京 211189)
Author(s):
Sun GuowenSun WeiZhang YunshengLiu ZhiyongWang Caihui
(Jiangsu Key Laboratory of Construction Materials, Southeast University, Nanjing 211189, China)
关键词:
水泥基复合材料氯离子扩散系数界面过渡区复合球模型
Keywords:
cement-based composite material chloride ion diffusion coefficient interfacial transition zone composite sphere model
分类号:
TU528
DOI:
10.3969/j.issn.1001-0505.2011.02.031
摘要:
基于水泥基复合材料界面区水泥颗粒的分布特征,给出了界面区孔隙率分布函数和界面区的有效扩散系数; 将水泥基复合材料视为骨料、基体、界面区以及其均匀化后的等效介质相四相复合球模型,采用n层球夹杂理论,逐尺度地预测了氯离子在水泥基复合材料中的有效扩散系数.结果表明:预测的氯离子扩散系数与实测结果基本吻合; n层球夹杂理论适合于预测氯离子在水泥基复合材料中的有效扩散系数,其中氯离子在水泥基复合材料中的扩散系数由基体扩散系数、界面过渡区扩散系数、骨料以及界面过渡区的体积分数确定.
Abstract:
Based on the cement particle distribution characteristics of interfacial transition zones (ITZ) in cement-based composite materials, the porosity distribution functions and effective chloride diffusivities of ITZ are obtained. The cement-based composite materials are treated as a four-phase composite sphere model, consisting of cement continuous phase, aggregates dispersed phase, ITZ and homogenization effective medium phase. The multi-scale methods are used to predict the effective chloride diffusion coefficient in cement-based materials by applying the theory of n-layered spherical inclusions. The results show that predicted results are in good agreement with experimental results; The n-layered sphere model is suitable to predict the effective diffusion coefficient of chloride ion in cement-based composite materials, while the chloride diffusivity in cement-based composite materials is determined by the chloride diffusion coefficient of matrix and ITZ, as well as volume fraction of aggregate and ITZ.

参考文献/References:

[1] Caré S.Influence of aggregates on chloride diffusion coefficient into mortar [J].Cement and Concrete Research,2003,33(7):1021-1028.
[2] Nguyen T Q,Petkovic/′ J,Dangla P,et al.Modelling of coupled ion and moisture transport in porous building materials[J].Construction and Building Materials,2008,22(11):2185-2195.
[3] Oh B H,Jang S Y.Prediction of diffusivity of concrete based on simple analytic equations [J].Cement and Concrete Research,2004,34(3):463-480.
[4] Bernard O,Ulm F J,Lemarchand E.A multiscale micromechanics-hydration model for the early-age elastic properties of cement-based materials [J].Cement and Concrete Research,2003,33(9):1293-1309.
[5] Hashin Z.The elastic module of heterogeneous materials [J].Applied Mechanics,1962,29(1):143-150.
[6] Hervé E,Zaoui A.N-layered inclusion-based micromechanical modeling[J].International Journal of Engineering Science,1993,31(1):1-10.
[7] Hervé E,Zaoui A.Elastic behaviour of multiply coated fibre-reinforced composites [J].International Journal of Engineering Science,1995,33(10):1419-1433.
[8] Herve E.Thermal and thermoelastic behaviour of multiply coated inclusion-reinforced composites [J].International Journal of Solids and Structures,2002,39(4):1041-1058.
[9] Lu B L,Torquato S.Nearest surface distribution functions for polydispersed particle systems [J].Phys Rev A,1992,45(8):5530-5544.
[10] Shane J D,Mason T O,Jennings H M,et al.Effect of the interfacial transition zone on the conductivity of Portland cement mortars [J].Am Ceram Soc,2000,83(5):1137-1144.
[11] Garboczi E J,Bentz D P.Analytical formulas for interfacial transition zone properties [J].Advanced Cement Based Materials,1997,6(3/4):99-108.
[12] Garboczi E J,Bentz D P.Multiscale analytical/numerical theory of the diffusivity of concrete [J].Advanced Cement Based Materials,1998,8(2):77-88.
[13] Zheng J J,Zhou X Z.Prediction of the chloride diffusion coefficient of concrete [J].Materials and Structures,2007,40(7):693-701.
[14] Zheng J J,Li C Q,Zhou X Z.Characterization of microstructure of interfacial transition zone in concrete [J].ACI Materials Journal,2005,102(4):265-271.
[15] Yang C C,Su J K.Approximate migration coefficient of interfacial transition zone and the effect of aggregate content on the migration coefficient of mortar [J].Cement and Concrete Research,2002,32(10):1559-1565.
[16] Ollivier J P,Maso J C,Bourdette B.Interfacial transition zone in concrete [J].Advanced Cement Based Materials,1995,2(1):30-48.

相似文献/References:

[1]张芹,郭力,郭小明.氯离子环境下钢筋混凝土构件多筋锈胀破坏模式[J].东南大学学报(自然科学版),2018,48(3):528.[doi:10.3969/j.issn.1001-0505.2018.03.022]
 Zhang Qin,Guo Li,Guo Xiaoming.Damage pattern on multi-rebar corroded concrete structures in high chloride environment[J].Journal of Southeast University (Natural Science Edition),2018,48(2):528.[doi:10.3969/j.issn.1001-0505.2018.03.022]

备注/Memo

备注/Memo:
作者简介:孙国文(1977—),男,博士生;孙伟(联系人),女,教授,博士生导师,中国工程院院士,sunwei@seu.edu.cn.
基金项目:国家重点基础研究发展计划(973计划)资助项目(2009CB623200)、国家高技术研究发展计划(863计划)资助项目(2008 AA030794).
引文格式: 孙国文,孙伟,张云升,等.预测氯离子在水泥基复合材料中有效扩散系数[J].东南大学学报:自然科学版,2011,41(2):376-381.[doi:10.3969/j.issn.1001-0505.2011.02.031]
更新日期/Last Update: 2011-03-20