# [1]吕忠,陈惠苏,袁海峰.水泥基复合材料中纤维和裂缝的几何关系及其模拟[J].东南大学学报(自然科学版),2011,41(5):1054-1058.[doi:10.3969/j.issn.1001-0505.2011.05.030] 　Lü Zhong,Chen Huisu,Yuan Haifeng.Simulation and characterization of geometrical relationship between fibers and cracks in cementitious composites[J].Journal of Southeast University (Natural Science Edition),2011,41(5):1054-1058.[doi:10.3969/j.issn.1001-0505.2011.05.030] 点击复制 水泥基复合材料中纤维和裂缝的几何关系及其模拟() 分享到： var jiathis_config = { data_track_clickback: true };

41

2011年第5期

1054-1058

2011-09-20

## 文章信息/Info

Title:
Simulation and characterization of geometrical relationship between fibers and cracks in cementitious composites

(东南大学材料科学与工程学院,南京 211189)(东南大学江苏省土木工程材料重点实验室,南京211189)
Author(s):
(School of Materials Science and Engineering, Southeast University, Nanjing 211189, China)
(Jiangsu Key Laboratory of Construction Materials, Southeast University, Nanjing 211189, China)

Keywords:

TU528.01
DOI:
10.3969/j.issn.1001-0505.2011.05.030

Abstract:
Based on the ideal assumption that cracks and fibers randomly distribute in cementitious composites matrix and in virtue of the fundamental theory of stochastic geometry and integral geometry, the quantitative relationship between randomly dispersed fibers and cracks is presented in this paper from the viewpoint of fibers/cracks separately. The mutual relationship model of fibers and cracks in matrix is established (namely, the model of multiscale fibers and single disc crack and the model of multiscale disc cracks and single fiber). Investigation results show that the quantitative relationship is determined by their quantitative density and size distribution in cementitious composites matrix. Meanwhile, the reliability of the theoretical results is verified and the spatial existing pattern and the intersecting behavior of fibers and cracks in matrix are simulated by computer modeling technology.

## 参考文献/References:

[1] 赵国藩,彭少民,黄承逵.钢纤维混凝土结构[M].北京:中国建筑工业出版社,1999.
[2] 黄承逵.纤维混凝土结构[M].北京:机械工业出版社,2004.
[3] Bentur A,Mindess S.Fibre reinforced cementitious composites[M].2nd ed.London:Taylor &Francis,2007.
[4] Caruso J J.Application of finite element substructuring to composite micromechanics[D].Akron,OH,USA:Department of Civil Engineering,University of Akron,1984.
[5] Brockenbrugh J R,Suresh S,Wienecke H A.Deformation of metal-matrix composites with continuous fibers:geometrical effects of fiber distribution and shape[J].Acta Metallurgica Materialia,1991,39(5):735-752.
[6] Nicholson W L.Estimation of linear properties of particle size distributions[J].Biometrika,1970,57(2):273-279.
[7] Picklesimer M L.Theory and practice of the selection of the plane of examination [M]//de Hoff R T,Rhines F N.Quantitative Microscopy.New York:McGraw-Hill,1968:326-379.
[8] Stroeven P.Some aspects of the micromechanics of concrete [D].Delft,The Netherlands:Stevin Laboratory,Technological University of Delft,1973.
[9] Sneddon I N,Lowengrub M.Crack problems in the classical theory of elasticity[M].New York:Wiley,1969.
[10] Johnson R P,Lowe P G.Behavior of concrete under biaxial and triaxial stress[C]//Proceedings of the Southampton 1969 Civil Engineering Materials Conference.London:Wiley-Interscience,1971:1039-1051.
[11] Stroeven P.Geometric probability approach to the examination of microcracking in plain concrete[J].Journal of Materials Science,1979,14(5):1141-1151.
[12] Fisher J C,Hollomon J H.A statistical theory of fracture[J].Transactions of the American Institute of Mining Metallurgical Engineers,1947,14(5):546-561.
[13] Bour O,Davy P.Clustering and size distributions of fault patterns:Theory and measurements[J].Geophysical Research Letters,1999,26(13):2001-2004.
[14] Bonnet E,Bour O,Odling E,et al.Scaling of fracture systems in geological media[J].Reviews of Geophysics,2001,39(3):347-383.
[15] Bour O,Davy P,Darcel C,et al.A statistical scaling model for fracture network geometry,with validation on a multiscale mapping of a joint network (Hornelen Basin,Norway)[J].Journal of Geophysical Research,2002,107(6):2113-2124.
[16] Carpinteri A,Puzzi S.The fractal-statistical approach to the size-scale effects on material strength and toughness[J].Probabilistic Engineering Mechanics,2009,24(1):75-83.
[17] Carpinteri A,Lacidogna G,Niccolini G.Critical behavior in concrete structures and damage localization by acoustic emission[J].Key Engineering Materials,2006,312:305-310.
[18] Penttinen A,Stoyan D.Statistical analysis for a class of line segment processes[J].Scandinavian Journal of Statistics,1989,16(2):153-168.
[19] Santaló L A.Integral geometry and geometric probability[M].London:Addison-Wesley,1976.
[20] Baddeley A,Gregori P,Mateu J,et al.Case studies in spatial point pattern modeling[M].New York:Springer,2006.
[21] Diggle P J.Statististical analysis of spatial point patterns[M].2nd ed.London:Edward Arnold,2003.
[22] Baddeley A.Spatial point processes and their applications[M]//Baddeley A,et al.Stochastic Geometry.New York:Springer,2007:1-73.
[24] Fava N A,Santaló L A.Random processes of manifolds in Rn[J].Probability Theory and Related Fields,1979,50(1):85-96.

## 相似文献/References:

[1]曹双寅,邱洪兴,蓝宗建.受弯构件正截面基本方程及在评估中的应用[J].东南大学学报(自然科学版),1994,24(3):106.[doi:10.3969/j.issn.1001-0505.1994.03.018]
Cao Shuangying,Qu Hongxing,et al.The Basic Equation of Flextural Members and Its Use in Evaluation[J].Journal of Southeast University (Natural Science Edition),1994,24(5):106.[doi:10.3969/j.issn.1001-0505.1994.03.018]
[2]蒋国忠,李浚沛,章文勋.纵向裂缝谐振阵列频率特性的研究[J].东南大学学报(自然科学版),1996,26(5):70.[doi:10.3969/j.issn.1001-0505.1996.05.014]
Jiang Guozhong,Li Junpei,Li Junpei,et al.A Study for Frequency Characteristic of Longitudinal Slot Resonant Array[J].Journal of Southeast University (Natural Science Edition),1996,26(5):70.[doi:10.3969/j.issn.1001-0505.1996.05.014]