[1]李岩,过秀成,杨洁,等.基于小波变换和频谱分析的交叉口群路径分级方法[J].东南大学学报(自然科学版),2012,42(1):168-172.[doi:10.3969/j.issn.1001-0505.2012.01.031]
 Li Yan,Guo Xiucheng,Yang Jie,et al.Routes classification method at intersections group using wavelet transform and spectrum analysis[J].Journal of Southeast University (Natural Science Edition),2012,42(1):168-172.[doi:10.3969/j.issn.1001-0505.2012.01.031]
点击复制

基于小波变换和频谱分析的交叉口群路径分级方法()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
42
期数:
2012年第1期
页码:
168-172
栏目:
交通运输工程
出版日期:
2012-01-18

文章信息/Info

Title:
Routes classification method at intersections group using wavelet transform and spectrum analysis
作者:
李岩过秀成杨洁何赏璐刘迎
(东南大学交通学院,南京 210096)
Author(s):
Li YanGuo XiuchengYang JieHe ShangluLiu Ying
(School of Transportation, Southeast University, Nanjing 210096, China)
关键词:
路径分级小波变换频谱分析交叉口群数据挖掘
Keywords:
routes classification wavelet transform spectrum analysis intersections group data mining.
分类号:
U491.1
DOI:
10.3969/j.issn.1001-0505.2012.01.031
摘要:
为确定交叉口群的关键路径,建立了基于小波变换和频谱分析的路径分级模型.根据交叉口群交通关联性强的特点,通过小波变换对交通检测数据的降噪,以突显其短时变化特性; 计算上下游交叉口进口流向交叉谱的一致性和位相,确定上下游流向的关联性和统计滞后关系,得出流向的特征向量,并应用模糊识别方法将路径分级,确定交叉口群的关键路径.采用南京市广州路交叉口群实测交通数据验证模型的有效性.结果表明,模型可实现交叉口群的路径分级,并识别其关键路径,为交叉口群交通信号协调控制奠定基础.
Abstract:
A route classification method for intersection group using wavelet transform and spectrum analysis is proposed. According to the strong transportation relationship of the intersection group, the de-noise function of wavelet domain is applied to extract the short time pattern of each movement. Then the magnitude squared coherence and phase of the cross spectrum calculated by two entry movements between upstream and downstream intersections at one route are adopted to procure the eigenvectors of the route. Fuzzy cluster is then used to classify all the routes into several clusters by the eigenvectors, which makes the critical route easily acquired. Results of using the proposed model to an intersections group at Guangzhou Road in Nanjing show that the routes can be divided into three clusters, which match the field observation. The route classified by the proposed method can be used for optimization of the traffic signal control for related intersections group with satisfying effectiveness, robustness and reliability.

参考文献/References:

[1] 杨晓光,曾松,杭明升.中国城市道路交通实时自适应控制与管理系统研究[J].交通运输工程学报,2001,1(2):74-77.
  Yang Xiaoguang,Zeng Song,Hang Mingsheng.Research on advanced urban traffic control and management system for China[J].Journal of Traffic and Transportation Engineering,2001,1(2):74-77.(in Chinese)
[2] Denney R W,Head L,Spencer K.Signal timing under saturated conditions[R].Washington,DC:Federal Highway Administration,2008.
[3] 姜桂艳,张玮,常安德.基于GPS浮动车的交通信息采集系统的数据组织方法[J].吉林大学学报:工学版,2010,40(2):397-401.
  Jiang Guiyan,Zhang Wei,Chang Ande.Data organization method for traffic information acquisition system based on GPS equipped floating vehicle[J].Journal of Jilin University:Engineering and Technology Edition,2010,40(2):397-401.(in Chinese)
[4] 杨兆升,孙晓梅,王志建.快速路截面数据和车牌识别数据融合算法[J].北京工业大学学报,2009,35(10):1378-1383.
  Yang Zhaosheng,Sun Xiaomei,Wang Zhijia.Fusion algorithm for section detector data and license plate recognition data of expressway[J].Journal of Beijing University of Technology,2009,35(10):1378-1383.(in Chinese)
[5] Dixon M P,Rilett L R.Population origin-destination estimation using automatic vehicle identification and volume data[J].Journal of Transportation Engineering,2005,131(2):75-82.
[6] Adam Z,Abbas M,Yan L.Critical routes identification method using wavelet filtering[C]//13th International IEEE Conference on Intelligent Transportation Systems.Madeira Island,Portugal:IEEE,2010:337-341.
[7] Mallat S G.Theory for multiresolution signal decomposition:the wavelet representation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1989,11(7):674-693.
[8] Xie Y,Zhang Y,Ye Z.Short-term traffic volume forecasting using Kalman filter with discrete wavelet decomposition[J].Computer-Aided Civil and Infrastructure Engineering,2007,22(5):326-334.
[9] Stathopoulos A,Karlaftis M G.Spectral and cross-spectral analysis of urban traffic flows[C]//Proceedings of IEEE International Conference on Intelligent Transportation Systems.Oakland,CA,USA,2001:820-825.
[10] Castanié F.Digital spectral analysis:parametric,non-parametric and advanced methods[M].Hoboken,NJ,USA:Wiley-ISTE,2011.
[11] Stathopoulos A,Karlaftis M G.A multivariate state space approach for urban traffic flow modeling and prediction[J].Transportation Research Part C:Emerging Technologies,2003,11(2):121-135.

相似文献/References:

[1]高西奇,连乃祥,邹采荣,等.基于格型矢量量化的小波零树图像编码方法[J].东南大学学报(自然科学版),1999,29(5):41.[doi:10.3969/j.issn.1001-0505.1999.05.008]
 Gao Xiqi,Lian Naixiang,Zou Cairong,et al.Wavelet Zerotree Image Coding Based on Lattice Vector Quantization[J].Journal of Southeast University (Natural Science Edition),1999,29(1):41.[doi:10.3969/j.issn.1001-0505.1999.05.008]
[2]夏振平,李晓华,崔渊,等.基于小波变换的闪烁背光LCD响应时间估算[J].东南大学学报(自然科学版),2011,41(1):37.[doi:10.3969/j.issn.1001-0505.2011.01.008]
 Xia Zhenping,Li Xiaohua,Cui Yuan,et al.Response time estimation of blinking backlight LCD based on wavelet transformation[J].Journal of Southeast University (Natural Science Edition),2011,41(1):37.[doi:10.3969/j.issn.1001-0505.2011.01.008]

备注/Memo

备注/Memo:
作者简介:李岩(1983—),男,博士;过秀成(联系人),男,博士,教授,博士生导师,seuguo@163.com.
基金项目:国家自然科学基金资助项目(50422283)、建设部软科学研究资助项目(2008-K5-14)、江苏省普通高校研究生科研创新计划资助项目(CX10B_072Z).
引文格式: 李岩,过秀成,杨洁,等.基于小波变换和频谱分析的交叉口群路径分级方法[J].东南大学学报:自然科学版,2012,42(1):168-172.[doi:10.3969/j.issn.1001-0505.2012.01.031]
更新日期/Last Update: 2012-01-20