[1]李舒宏,丁一,杜垲,等.纳米TiO_2颗粒强化MDEA溶液鼓泡吸收CO_2的特性[J].东南大学学报(自然科学版),2013,43(4):830-834.[doi:10.3969/j.issn.1001-0505.2013.04.029]
 Li Shuhong,Ding Yi,Du Kai,et al.CO2 bubble absorption performance enhancement by TiO2 nanoparticles in MDEA solution[J].Journal of Southeast University (Natural Science Edition),2013,43(4):830-834.[doi:10.3969/j.issn.1001-0505.2013.04.029]
点击复制

纳米TiO_2颗粒强化MDEA溶液鼓泡吸收CO_2的特性()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
43
期数:
2013年第4期
页码:
830-834
栏目:
化学化工
出版日期:
2013-07-20

文章信息/Info

Title:
CO2 bubble absorption performance enhancement by TiO2 nanoparticles in MDEA solution
作者:
李舒宏丁一杜垲张小松
东南大学能源与环境学院, 南京210096
Author(s):
Li Shuhong Ding Yi Du Kai Zhang Xiaosong
School of Energy and Environment, Southeast University, Nanjing 210096, China
关键词:
纳米颗粒 N-甲基二乙醇胺 CO2捕集 传质强化 鼓泡吸收
Keywords:
nanoparticles N-methyldiethanolamine CO2 capture mass transfer enhancement bubble absorption
分类号:
TQ021.4
DOI:
10.3969/j.issn.1001-0505.2013.04.029
摘要:
为了强化N-甲基二乙醇胺(MDEA)溶液对CO2的吸收,首先不添加分散剂,制备了MDEA质量分数为50%、纳米TiO2颗粒质量分数分别为0.05%,0.2%,0.4%,0.8%的MDEA纳米流体,该MDEA纳米流体的分散稳定性良好.然后在一套小型吸收实验系统中,研究了颗粒质量分数对溶液鼓泡吸收CO2的影响.采用称重法来测量溶液对CO2的吸收量,并对实验结果的相对误差进行了分析.实验结果表明,在加入了纳米颗粒后,MDEA溶液对CO2的吸收得到了强化,有效吸收比随着颗粒质量分数的增大而上升.在纳米TiO2颗粒质量分数为0.05%,0.2%,0.4%,0.8%时,有效吸收比分别为1.019 5,1.065 3,1.077 9和1.115 4.最后分析和解释了相关的实验现象和结果.
Abstract:
In order to enhance the absorption of CO2 in the N-methyldiethanolamine(MDEA)solution, stable nanofluids(the mass fraction of MDEA is 50% and the mass fraction of TiO2 nanoparticles are 0.05%, 0.2%, 0.4% and 0.8%)without any dispersant were prepared. The influence of nanoparticles mass fraction on CO2bubble absorption in the MDEA solution was studied. The amount of CO2 absorbed by the solution was measured by the weighing method, and the relative errors of the experiment results were analyzed. The experimental results show that the absorption of CO2 in the MDEA solution is enhanced by the addition of TiO2 nanoparticles and the effective absorption ratio increases with the increase of TiO2 nanoparticles mass fraction. The results show that the effective absorption ratio can reach 1.019 5,1.065 3,1.077 9 and 1.115 4 when the mass fraction of TiO2 nanoparticles are 0.05%, 0.2%, 0.4% and 0.8%, respectively. The possible mechanisms of the results and phenomena in the experiments are also explained.

参考文献/References:

[1] Rochelle G T. Amine scrubbing for CO2 capture[J]. Science, 2009, 325(5948): 1652-1654.
[2] 薛全民, 周亚平, 苏伟. 甲基二乙醇胺水溶液吸收CO2的研究[J]. 化学工程, 2009, 37(9): 1-4.
  Xue Quanmin, Zhou Yaping, Su Wei. Study on absorption of CO2 into aqueous N-methyldiethanolamine[J]. Chemical Engineering(China), 2009, 37(9): 1-4.(in Chinese)
[3] Jou F Y, Mather A E, Otto F D. Solubility of hydrogen sulfide and carbon dioxide in aqueous methyldiethanolamine solutions[J]. Industrial & Engineering Chemistry Process Design and Development, 1982, 21(4): 539-544.
[4] 王渊涛, 方诚刚, 张锋, 等. 氨基酸离子液体-MDEA混合水溶液的CO2吸收性能[J]. 化工学报, 2009, 60(11): 2781-2786.
  Wang Yuantao, Fang Chenggang, Zhang Feng, et al. Performance of CO2 absorption in mixed aqueous solution of MDEA and amino acid ionic liquids[J]. CIESC Journal, 2009, 60(11): 2781-2786.(in Chinese)
[5] 成弘, 周明, 余国琮. 强化气液两相传质的研究进展[J]. 化学进展, 2001, 13(4): 315-322.
  Cheng Hong, Zhou Ming, Yu Guocong. Recent development of enhancement of gas-liquid mass transfer[J]. Progress in Chemistry, 2001, 13(4): 315-322.(in Chinese)
[6] 卢素敏, 马友光, 沈树华, 等. 微细固体颗粒对CO2吸收速率的影响[J].高校化学工程学报, 2008, 22(2): 356-360.
  Lu Sumin, Ma Youguang, Shen Shuhua, et al. Effect of fine solid particles on gas absorption rate of CO2[J]. Journal of Chemical Engineering of Chinese Universities, 2008, 22(2): 356-360.(in Chinese)
[7] Dagaonkar M V, Heeres H J, Beenackers A A C M, et al. The application of fine TiO2 particles for enhanced gas absorption[J]. Chemical Engineering Journal, 2003, 92(1/2/3): 151-159.
[8] Lu Sumin, Ma Youguang, Zhu Chunying, et al. The enhancement of CO2 chemical absorption by K2CO3 aqueous solution in the presence of activated carbon particles[J]. Chinese Journal of Chemical Engineering, 2007, 15(6): 842-846.
[9] 武卫东, 庞常伟, 盛伟, 等. 单体Ag纳米流体强化氨水鼓泡吸收特性[J]. 化工学报, 2010, 61(5): 1112-1117.
  Wu Weidong, Pang Changwei, Sheng Wei, et al. Enhancement on NH3/H2O bubble absorption in binary nanofluids by mono nano Ag[J]. CIESC Journal, 2010, 61(5): 1112-1117.(in Chinese)
[10] Choi S U S. Enhancing thermal conductivity of fluids with nanoparticles[C]//Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition. San Francisco, CA, USA,1995:99-105.
[11] Kim W, Kang H U, Jung K, et al. Synthesis of silica nanofluid and application to CO2 absorption[J]. Separation Science and Technology, 2008, 43(11/12): 3036-3055.
[12] 洪欢喜, 武卫东, 盛伟, 等. 纳米流体制备的研究进展[J].化工进展, 2008, 27(12): 1923-1928.
  Hong Huanxi, Wu Weidong, Sheng Wei, et al. Research progress of preparation of nanofluids[J]. Chemical Industry and Engineering Progress, 2008, 27(12): 1923-1928.(in Chinese)
[13] 崔爱莉, 王亭杰, 何红, 等. 超细二氧化钛粉末在水溶液中的分散[J]. 过程工程学报, 2001, 1(1): 99-101.
  Cui Aili, Wang Tingjie, He Hong, et al. Dispersion behavior of ultrafine titanium dioxide particles in aqueous solution[J]. The Chinese Journal of Process Engineering, 2001, 1(1):99-101.(in Chinese)
[14] 王维德. 表面张力对传质过程的影响[J].化学工程, 2004, 32(2): 14-18.
  Wang Weide. Effect of surface tension on mass transfer process[J]. Chemical Engineering(China), 2004, 32(2): 14-18.(in Chinese)
[15] Schumpe A, Saxena A K, Fang L K. Gas/liquid mass transfer in a slurry bubble column[J]. Chemical Engineering Science, 1987, 42(7): 1787-1796.
[16] Pandit A B, Joshi J B. Three phase sparged reactors—some design aspects[J]. Reviews in Chemical Engineering, 1984, 2(1): 1-84.
[17] Jamialahmadi M, Müller-Steinhagen H. Effect of solid particles on gas hold-up in bubble columns[J]. The Canadian Journal of Chemical Engineering, 1991, 69(1): 390-393.
[18] Krishnamurthy S, Bhattacharya P, Phelan P E, et al. Enhanced mass transport in nanofluids[J]. Nano Letters, 2006, 6(3): 419-423.
[19] Xuan Y. Conception for enhanced mass transport in binary nanofluids[J]. Heat and Mass Transfer, 2009, 46(2): 277-279.

相似文献/References:

[1]陆荔,马明,张宇,等.纳米材料生物安全性研究进展[J].东南大学学报(自然科学版),2004,34(5):711.[doi:10.3969/j.issn.1001-0505.2004.05.033]
 Lu Li,Ma Ming,Zhang Yu,et al.Development of study on the bio-safety of nanomaterials[J].Journal of Southeast University (Natural Science Edition),2004,34(4):711.[doi:10.3969/j.issn.1001-0505.2004.05.033]
[2]李舒宏,丁一,杜垲,等.TiO_2-MDEA-H_2O纳米流体中CO_2的界面吸收特性[J].东南大学学报(自然科学版),2013,43(6):1264.[doi:10.3969/j.issn.1001-0505.2013.06.025]
 Li Shuhong,Ding Yi,Du Kai,et al.Interface absorption characteristics of CO2 in TiO2-MDEA-H2O nanofluids[J].Journal of Southeast University (Natural Science Edition),2013,43(4):1264.[doi:10.3969/j.issn.1001-0505.2013.06.025]
[3]常岩,吴俊康,薛梦婷,等.受纳米毒性胁迫的亚硝化菌性能恢复[J].东南大学学报(自然科学版),2018,48(1):92.[doi:10.3969/j.issn.1001-0505.2018.01.014]
 Chang Yan,Wu Junkang,Xue Mengting,et al.Recovery performance of nitrosomonas europaea under toxicity of nanoparticles[J].Journal of Southeast University (Natural Science Edition),2018,48(4):92.[doi:10.3969/j.issn.1001-0505.2018.01.014]

备注/Memo

备注/Memo:
作者简介: 李舒宏(1973—),男,博士,研究员,博士生导师,equart@seu.edu.cn.
基金项目: 江苏省自然科学基金资助项目(BK2010199, BK2011017).
引文格式: 李舒宏,丁一,杜垲,等.纳米TiO2颗粒强化MDEA溶液鼓泡吸收CO2的特性[J].东南大学学报:自然科学版,2013,43(4):830-834. [doi:10.3969/j.issn.1001-0505.2013.04.029]
更新日期/Last Update: 2013-07-20