# [1]吴佰建,李兆霞,郭力.模拟混凝土破坏过程的微裂纹模型及其应用[J].东南大学学报(自然科学版),2013,43(5):1034-1038.[doi:10.3969/j.issn.1001-0505.2013.05.022] 　Wu Baijian,Li Zhaoxia,Guo Li.Micro-crack model for concrete rupture modeling and its applications[J].Journal of Southeast University (Natural Science Edition),2013,43(5):1034-1038.[doi:10.3969/j.issn.1001-0505.2013.05.022] 点击复制 模拟混凝土破坏过程的微裂纹模型及其应用() 分享到： var jiathis_config = { data_track_clickback: true };

43

2013年第5期

1034-1038

2013-09-20

## 文章信息/Info

Title:
Micro-crack model for concrete rupture modeling and its applications

Author(s):
School of Civil Engineering, Southeast University, Nanjing 210096, China

Keywords:

O346.1
DOI:
10.3969/j.issn.1001-0505.2013.05.022

Abstract:
A meso-scale multiple-crack model for modeling concrete rupture is proposed. This model can simulate the whole process of material rupture, including the growth of initial cracks on mortar/aggregate interfaces, coalescence of cracks, formulation and growth of macro cracks, and the final concrete rupture. As applications, 16 specimens for 4 different concrete mixes are generated and calculated. Results show that the numerical model can be used for revealing common failure modes and mechanisms. the increase of aggregate volume fraction can improve concrete ductility, while at the same time, lower its strength, which coincides with existing experimental results. The model provides a new approach for numerically modeling the failure process of quasi-brittle materials. Since it is directly from the actual physics of concrete ruptures, hopefully this model can be utilized as an effective tool for failure control and safety design on concrete materials/structures.

## 参考文献/References:

[1] Milne I, Ritchie R O, Karihaloo B L. Comprehensive structural integrity 2: fundamental theories and mechanisms of failure [M]. Oxford:Elsevier Pergamon, 2003.
[2] Bazant Z P, Tabbara M R, Kazemi M T, et al. Random particle model for fracture of aggregate or fiber composites [J]. Journal of Engineering Mechanics-Asce, 1990, 116(8): 1686-1705.
[3] Schlangen E, Garboczi E J. Fracture simulations of concrete using lattice models: computational aspects [J]. Engineering Fracture Mechanics, 1997, 57(2/3): 319-332.
[4] Lilliu G, van Mier J G M. 3D lattice type fracture model for concrete [J]. Engineering Fracture Mechanics, 2003, 70(7/8): 927-941.
[5] Mungule M, Raghuprasad B K. Meso-scale studies in fracture of concrete: a numerical simulation [J]. Computers & Structures, 2011, 89(11/12): 912-920.
[6] Wriggers P, Moftah S O. Mesoscale models for concrete: homogenisation and damage behaviour [J]. Finite Elements in Analysis and Design, 2006, 42(7): 623-636.
[7] Yang Z J, Chen J F. Fully automatic modelling of cohesive discrete crack propagation in concrete beams using local arc-length methods [J]. International Journal of Solids and Structures, 2004, 41(3/4): 801-826.
[8] Mohamed A R, Hansen W. Micromechanical modeling of concrete response under static loading-part 1: model development and validation [J]. Aci Materials Journal, 1999, 96(2): 196-203.
[9] Deborst R, Vandenboogaard A H. Finite-element modeling of deformation and cracking in early-age concrete [J]. Journal of Engineering Mechanics-Asce, 1994, 120(12): 2519-2534.
[10] Krajcinovic D, Fanella D. A micromechanical damage model for concrete [J]. Engineering Fracture Mechanics, 1986, 25(5/6): 585-596.
[11] Wang Z M, Kwan A K H, Chan H C. Mesoscopic study of concrete Ⅰ: generation of random aggregate structure and finite element mesh [J]. Computers & Structures, 1999, 70(5): 533-544.
[12] Stroeven P, Stroeven M. Assessment of packing characteristics by computer simulation [J]. Cement and Concrete Research, 1999, 29(8): 1201-1206.
[13] Rice J R. Elastic fracture-mechanics concepts for interfacial cracks [J]. Journal of Applied Mechanics, Transactions of the ASME, 1988, 55(1): 98-103.
[14] Ortiz M. Microcrack coalescence and macroscopic crack-growth initiation in brittle solids [J]. International Journal of Solids and Structures, 1988, 24(3): 231-250.
[15] Huang X, Karihaloo B L. Tension softening of quasi-brittle materials modeled by singly and doubly periodic arrays of coplanar penny-shaped cracks [J]. Mechanics of Materials, 1992, 13(3): 257-275.
[16] Erdogan F, Sih G C. On the crack extension in plates under plane loading and transverse shear [J]. Journal of Basic Engineering, 1963, 85(4): 519-525.
[17] Vanmier J G M. Mode-Ⅰ fracture of concrete-discontinuous crack-growth and crack interface grain bridging [J]. Cement and Concrete Research, 1991, 21(1): 1-15.

## 相似文献/References:

[1]王毅,叶见曙.温度梯度对混凝土曲线箱梁影响的计算方法[J].东南大学学报(自然科学版),2005,35(6):924.[doi:10.3969/j.issn.1001-0505.2005.06.021]
Wang Yi,Ye Jianshu.Computing method of effect of thermal gradient on concrete curved box-girders[J].Journal of Southeast University (Natural Science Edition),2005,35(5):924.[doi:10.3969/j.issn.1001-0505.2005.06.021]
[2]孙巍巍,孟少平.后张无粘结预应力装配混凝土联肢抗震墙的连梁组合体抗侧性能[J].东南大学学报(自然科学版),2007,37(2):190.[doi:10.3969/j.issn.1001-0505.2007.02.003]
Sun Weiwei,Meng Shaoping.Lateral load behavior of unbonded post-tensioned coupled concrete wall subassemblages[J].Journal of Southeast University (Natural Science Edition),2007,37(5):190.[doi:10.3969/j.issn.1001-0505.2007.02.003]
[3]潘建伍,曹双寅,何小元,等.散斑干涉在纤维与混凝土粘结面位移场测量中的应用[J].东南大学学报(自然科学版),2003,33(3):347.[doi:10.3969/j.issn.1001-0505.2003.03.025]
Pan Jianwu,Cao Shuangyin,He Xiaoyuan,et al.Application of ESPI in displacement measurement of bond area between FRP and concrete[J].Journal of Southeast University (Natural Science Edition),2003,33(5):347.[doi:10.3969/j.issn.1001-0505.2003.03.025]
[4]符冠华,杨毅文,耿小平,等.双预应力混凝土梁桥的研究[J].东南大学学报(自然科学版),2001,31(3):128.[doi:10.3969/j.issn.1001-0505.2001.03.030]
Fu Guanhua,Yang Yiwen,Geng Xiaoping,et al.Research on Bi-Prestressing System of Simply Supported Concrete Girder Bridge[J].Journal of Southeast University (Natural Science Edition),2001,31(5):128.[doi:10.3969/j.issn.1001-0505.2001.03.030]
[5]关宇刚,孙伟,缪昌文.冻融疲劳作用下高强混凝土劣化特征点的分析[J].东南大学学报(自然科学版),2001,31(6):25.[doi:10.3969/j.issn.1001-0505.2001.06.007]
Guan Yugang,Sun Wei,Miao Changwen.Analysis of the Characteristic Degradation Points for High Strength Concrete Subjected to Freeze-Thaw Cycles[J].Journal of Southeast University (Natural Science Edition),2001,31(5):25.[doi:10.3969/j.issn.1001-0505.2001.06.007]
[6]顾文钧,俞建荣.水泥混凝土与沥青混凝土复合式路面温度梯度分析[J].东南大学学报(自然科学版),1997,27(3):23.[doi:10.3969/j.issn.1001-0505.1997.03.005]
Thermal Gradient Analysis of Cement Concrete and Asphalt Concrete Composite Pavement Gu Wenjun Yu Jianrong[J].Journal of Southeast University (Natural Science Edition),1997,27(5):23.[doi:10.3969/j.issn.1001-0505.1997.03.005]
[7]聂彦锋,钱春香.基于RST的混凝土硫酸盐侵蚀评价指标分析及损伤程度预测[J].东南大学学报(自然科学版),2013,43(3):594.[doi:10.3969/j.issn.1001-0505.2013.03.027]
Nie Yanfeng,Qian Chunxiang.Evaluation indices analysis and sulfate attack degree prediction of concrete based on RST[J].Journal of Southeast University (Natural Science Edition),2013,43(5):594.[doi:10.3969/j.issn.1001-0505.2013.03.027]
[8]张云升,孙伟,陈树东,等.粉煤灰混凝土2D和3D碳化试验[J].东南大学学报(自然科学版),2006,36(4):562.[doi:10.3969/j.issn.1001-0505.2006.04.014]
Zhang Yunsheng,Sun Wei,Chen Shudong,et al.2D and 3D carbonation of fly ash concrete[J].Journal of Southeast University (Natural Science Edition),2006,36(5):562.[doi:10.3969/j.issn.1001-0505.2006.04.014]
[9]詹炳根,孙伟,沙建芳,等.碱硅酸反应作用下混凝土中氯离子扩散规律和结合能力[J].东南大学学报(自然科学版),2006,36(6):956.[doi:10.3969/j.issn.1001-0505.2006.06.017]
Zhan Binggen,Sun Wei,Sha Jianfang,et al.Chloride diffusion and binding capacity in concrete suffered from ASR[J].Journal of Southeast University (Natural Science Edition),2006,36(5):956.[doi:10.3969/j.issn.1001-0505.2006.06.017]
[10]张云升,孙伟,陈树东,等.弯拉应力作用下粉煤灰混凝土的1D和2D碳化[J].东南大学学报(自然科学版),2007,37(1):118.[doi:10.3969/j.issn.1001-0505.2007.01.025]
Zhang Yunsheng,Sun Wei,Chen Shudong,et al.1D and 2D carbonation of fly ash concrete under flexural stress[J].Journal of Southeast University (Natural Science Edition),2007,37(5):118.[doi:10.3969/j.issn.1001-0505.2007.01.025]