[1]谭福颖,乔玲,韩晓林.基于广义梁理论的薄壁圆柱壳稳定性分析[J].东南大学学报(自然科学版),2013,43(5):1062-1067.[doi:10.3969/j.issn.1001-0505.2013.05.027]
 Tan Fuying,Qiao Ling,Han Xiaolin.Stability analysis of thin-walled cylindrical shells based on generalised beam theory[J].Journal of Southeast University (Natural Science Edition),2013,43(5):1062-1067.[doi:10.3969/j.issn.1001-0505.2013.05.027]
点击复制

基于广义梁理论的薄壁圆柱壳稳定性分析()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
43
期数:
2013年第5期
页码:
1062-1067
栏目:
其他
出版日期:
2013-09-20

文章信息/Info

Title:
Stability analysis of thin-walled cylindrical shells based on generalised beam theory
作者:
谭福颖乔玲韩晓林
东南大学土木工程学院, 南京 210096; 东南大学江苏省工程力学分析重点实验室, 南京 210096
Author(s):
Tan Fuying Qiao Ling Han Xiaolin
School of Civil Engineering, Southeast University, Nanjing 210096, China
Jiangsu Key Laboratory of Engineering Mechanics, Southeast University, Nanjing 210096, China
关键词:
薄壁圆柱壳 广义梁理论 临界应力 稳定性分析
Keywords:
thin-walled cylindrical shell generalised beam theory critical stress stability analysis
分类号:
V214
DOI:
10.3969/j.issn.1001-0505.2013.05.027
摘要:
将广泛应用于薄壁棱柱形构件稳定性研究的广义梁理论推广到薄壁圆形截面柱壳的稳定性分析中,采用正交对称形式的位移函数,并考虑截面畸变翘曲的影响. 由能量法推导出临界应力表达式,提出了一种用于薄壁圆形截面的柱壳稳定性分析的新方法,并进一步研究了不同长细比薄壁圆柱壳的临界屈曲应力与轴长及壁厚之间的关系.研究表明:随圆柱壳轴长的增大,临界应力整体呈波动下降趋势,其中存在的局部极小值点为对应于不同屈曲模态下的临界应力;随着圆柱壳壁厚的增大,临界应力呈增大趋势.上述方法的分析结果与有限元方法模拟结果及文献中结果对比均具有较好的一致性,说明将广义梁理论应用于薄壁圆柱壳稳定性分析是可行的.
Abstract:
The generalised beam theory, which is widely applied to thin-walled prismatic shaped shells, is extended to conduct the stability analysis of a thin-walled cylindrical shell. Based on the orthogonal symmetric displacement function and considering the influence of the cross sectional distortion warp, the formulation of the critical stress is obtained by the energy method. Therefore, a new method for the stability analysis of cylindrical shells is proposed and relationships among the critical buckling stresses of the shells with different slenderness ratios, length and thickness are further studied. The results show that the critical stress decreases with the increase in the length of the shell with local minimum values corresponding to the critical stress of different buckling modes. The critical stress increases when the thickness of the shells increases. The results from the proposed method has good agreement with those from the finite element simulations and results from other researchers, which demonstrates that the application of the generalised beam theory to the stability analysis of thin-walled cylindrical shells is effective.

参考文献/References:

[1] Schardt R. Verallgemeinerte technische biegetheorie[M]. Berlin: Springer, 1989.
[2] Davies J M, Leach P, Heinz D. Second-order generalized beam theory [J]. Journal of Constructional Steel Research, 1994, 31(2/3): 221-241.
[3] Silvestre N. Generalised beam theory to analyze the buckling behavior of circular cylindrical shells and tubes [J]. Thin-Walled Structures, 2007, 45(2): 185-198.
[4] Ranzi G, Luogo A. A new approach for thin-walled member analysis in the framework of GBT [J]. Thin-Walled Structures, 2011, 49(11): 1404-1414.
[5] Dinis P B, Camotim D, Silvestre N. GBT formulation to analyse the buckling behaviour of thin-walled members with arbitrarily ‘branched’ open cross-sections [J]. Thin-Walled Structures, 2006, 44(1): 20-38.
[6] Basaglia C, Camotim D, Silvestre N. Global buckling analysis of plane and space thin-walled frames in the context of GBT [J]. Thin-Walled Structures, 2008, 46(1): 79-101.
[7] Basaglia C, Camotim D, Silvestre N. Post-buckling analysis of thin-walled steel frames using generalised beam theory(GBT)[J]. Thin-Walled Structures, 2013, 62: 229-242.
[8] 李开禧. 弹性薄壁杆件的翘曲[M]. 北京:中国建筑工业出版社,1990.
[9] Ju G T, Kyriakides S. Bifurcation and localization instabilities in cylindrical shells under bending-Ⅱ: predictions [J]. International Journal of Solids and Structures, 1992, 29(9): 1143-1171.
[10] Camotim D, Silvestre N, Goncalves R,et al. GBT-based structural analysis of thin-walled members: overview, recent progress and future developments [J]. Engineering Structures, Mechanics and Construction, SMCD, 2006, 14-17: 187-204.
[11] Silvestre N, Camotim D. GBT buckling analysis of pultruded FRP lipped channel members [J]. Comput er and Structures, 2003, 81(18/19): 1889-1904.
[12] Silvestre N, Camotim D. Distortional buckling formulae for cold formed steel C and Z-section members: part Ⅰ-derivation [J]. Thin-Walled Structures, 2004, 42(11): 1567-1597.
[13] Singer J, Arbocz J, Weller T. Buckling experiments-experimental methods in buckling of thin-walled structures [M]. New York, USA: Wiley, 2002.
[14] 陈兴华,龙连春.轴压薄壁圆柱壳弹性失稳承载力分类及对比[C]//北京力学会第15届学术年会论文摘要集.北京,2009:215-216.
  Chen Xinghua, Long Lianchun. Thin-walled cylindrical shells elastic buckling bearing capacity of classification and comparison with axial compressive [C]//Mechanics of Beijing the Fifteenth Annual Meeting of Abstracts. Beijing, 2009:215-216.(in Chinese)
[15] Timoshenko S P, Gere J M. Theory of elastic stability [M]. New York, USA: McGraw-Hill, 1961.
[16] Brush D O, Almroth B O. Buckling of bars, plates and shells [M]. New York, USA: McGraw-Hill, 1975.

备注/Memo

备注/Memo:
作者简介: 谭福颖(1989—),女,硕士生;韩晓林(联系人),男,教授,xlhan@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(10902024)、教育部新世纪优秀人才支持计划资助项目(NCET-11-0086)、江苏省自然科学基金资助项目(BK2010397)、航空科学基金资助项目(20090869009).
引文格式: 谭福颖,乔玲,韩晓林.基于广义梁理论的薄壁圆柱壳稳定性分析[J].东南大学学报:自然科学版,2013,43(5):1062-1067. [doi:10.3969/j.issn.1001-0505.2013.05.027]
更新日期/Last Update: 2013-09-20