[1]孙颖,等.白蛋白和石墨烯的结构及其相互作用的分子动力学模拟[J].东南大学学报(自然科学版),2014,44(1):123-128.[doi:10.3969/j.issn.1001-0505.2014.01.022]
 Sun Ying,Ding Jiali,et al.Molecular dynamics simulations of albumin and graphene structures and their interaction[J].Journal of Southeast University (Natural Science Edition),2014,44(1):123-128.[doi:10.3969/j.issn.1001-0505.2014.01.022]
点击复制

白蛋白和石墨烯的结构及其相互作用的分子动力学模拟()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
44
期数:
2014年第1期
页码:
123-128
栏目:
生物医学工程
出版日期:
2014-01-18

文章信息/Info

Title:
Molecular dynamics simulations of albumin and graphene structures and their interaction
作者:
孙颖1 2丁佳丽1 2宗皓3王健丹1吕晓迎1
1东南大学生物电子学国家重点实验室, 南京210096; 2东南大学江苏省生物材料与器件重点实验室, 南京210009; 3东南大学软件学院, 南京211189
Author(s):
Sun Ying1 2 Ding Jiali1 2 Zong Hao3 Wang Jiandan1 Lü Xiaoying1
1Key Laboratory of Molecalar and Biomalecular Electronics of Ministry of Education, Southeast University, Nanjing 210096, China
2Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing 210009, China
3College of Software Engineering, Southeast University, Nanjing 211189, China
关键词:
分子动力学模拟 白蛋白 石墨烯 相互作用机制
Keywords:
molecular dynamics simulation albumin graphene interaction mechanism
分类号:
R318.08
DOI:
10.3969/j.issn.1001-0505.2014.01.022
摘要:
采用分子动力学模拟的方法分析研究了白蛋白与石墨烯表面的相互作用.分子模拟过程采用Gromacs软件进行运算及数据采集分析,并采用VMD软件实现结构的可视化.首先,建立周期边界条件,在边长为9 nm的有限空间中采用恒温恒压系综,对ffgmx力场条件下的白蛋白原始真空构象进行优化,使其在水相中达到平衡态.然后,以水相中得到的稳定的白蛋白作为模型,构建与石墨烯相互作用的总体构象及界面.最后,在周期性边界条件下,经过500 ps的动态过程,完成了白蛋白在石墨烯表面的吸附.对能量、残基轨迹、扭转角等数据进行分析总结,确定了白蛋白在石墨烯表面的吸附位点为白蛋白序列中90~97号肽段90ALA-91GLY-92ILE-93THR-94SER-95ASP-96PHE-97TYR.
Abstract:
Molecular dynamics simulations were used to study the interaction between albumin and graphene surface. During the simulation, Gromacs software was used to collect and analyze data, and VMD software was used to realize visualization of structures. First, the periodic boundary condition was established. The constant temperature and pressure ensemble was adopted in a limited space with the side length of 9 nm, and the original vacuum conformation of albumin was optimized under the force field ffgmx, so that equilibrium in the aqueous phase was reached. Then, the optimized stable albumin in the aqueous phase was used as a model to build the overall conformation and interaction interface with graphene. Finally, after 500 ps of the dynamic process under periodic boundary conditions, the adsorption of albumin onto the graphene surface was completed. The energy, trajectory of residues, torsion angle and other data were analyzed, and the adsorption sites of albumin on the graphene surface were determined to be 90 to 97 peptide 90ALA-91GLY-92ILE-93THR-94SER-95ASP-96PHE-97TYR.

参考文献/References:

[1] Lü X Y, Huang Y, Zheng B Z, et al. Comparing adsorptive property of natural and synthesized hydroxyapatite to albumin, fibrinogen and IgG[J]. Key Engineering Materials, 2007, 330/331/332:869-872.
[2] Lü X Y, Cui W, Huang Y, et al. Surface modification on silicon with chitosan and biological research[J]. Biomedical Materials, 2009, 4(4): 044103.
[3] 李艺,程镕时. 蛋白质在固体表面吸附的研究进展[J]. 高分子通报,2007(3):41-49.
  Li Yi, Cheng Rongshi. Development of studying for protein adsorption on the solid surface[J]. Polymer Bulletin, 2007(3):41-49.(in Chinese)
[4] Raffaini G, Ganazzoli F. Protein adsorption on the hydrophilic surface of a glassy polymer: a computer simulation study [J]. Physical Chemistry Chemical Physics, 2006, 8(23): 2765-2772.
[5] Kandori K, Tsuyama S, Tanaka H, et al. Protein adsorption characteristics of calcium hydroxyapatites modified with pyrophosphoric acids [J]. Colloids and Surfaces B: Biointerfaces, 2007, 58(2): 98-104.
[6] Huang Y, Lü X Y, Qian W P, et al. Competitive protein adsorption on biomaterial surface studied with reflectometric interference spectroscopy[J]. Acta Biomaterialia, 2010, 6(6):2083-2090.
[7] Svendsen I E, Santos O, Sotres J, et al. Adsorption of HSA, IgG and laminin-1 on model hydroxyapatite surfaces-effects of surface characteristics[J]. Biofouling, 2012,28(1):87-97.
[8] 沈贺,张立明,张智军. 石墨烯在生物医学领域中的应用[J]. 东南大学学报:医学版,2011, 30(1): 223-228.(in Chinese)
  Shen He, Zhang Liming, Zhang Zhijun. Application of graphene in biomedicine area[J]. Journal of Southeast University:Medical Science Edition, 2011, 30(1): 223-228.(in Chinese)
[9] 姜晖,王雪梅,王晨苏.石墨烯类材料在生物医学领域应用的研究进展[J]. 药学学报,2012, 47(3): 291-298.
  Jiang Hui, Wang Xuemei, Wang Chensu. Research progress of graphene-based materials in the application to biomedicine [J]. Acta Pharmaceutica Sinica,2012, 47(3): 291-298.(in Chinese)
[10] Zhou H, Wu T, Dong X, et al. Adsorption mechanism of BMP-7 on hydroxyapatite(001)surfaces[J]. Biochemical and Biophysical Research Communications, 2007, 361(1): 91-96.
[11] Guo S, Shi X, Yang F, et al. Structural basis of transport of lysophospholipids by human serum albumin [EB/OL].(2009-09-13)[2012-10-18]. http://www.pdb.org.
[12] Miroslav K, Ján U,Pavel M. Theoretical study of structure changes caused by applying mechanical strain on peptide L24[J]. Journal of Molecular Modeling, 2010, 16(11): 1693-1699.
[13] 韩振为,周薇. 分子模拟蛋白质在氧化锌界面上的吸附[J].天津大学学报,2007,40(3):366-370.
  Han Zhenwei, Zhou Wei. Molecular simulation of adsorption of protein on zinc oxide interface[J]. Journal of Tianjin University, 2007, 40(3):366-370.(in Chinese)
[14] Chen X, Wu T, Wang Q, et al. Shield effect of silicate on adsorption of proteins onto silicon-doped hydroxyapatite(100)surface [J]. Biomaterials, 2008, 29(15): 2423-2432.
[15] Christian M, Herbert M U. Molecular dynamics simulation of free and forced BSA adsorption on a hydrophobic graphite surface[J]. Langmuir, 2011,27(21): 12938-12943.
[16] Tillmann U, Grazia D, Maria A M. Molecular dynamics simulations of the adsorption of bone morphogenetic protein-2 on surfaces with medical relevance[J]. Langmuir, 2011, 27(21): 13144-13153.

相似文献/References:

[1]葛艳艳,陈云飞,杨决宽,等.轴向电场对纳米管道中溶液离子径向分布的影响[J].东南大学学报(自然科学版),2008,38(4):683.[doi:10.3969/j.issn.1001-0505.2008.04.027]
 Ge Yanyan,Chen Yunfei,Yang Juekuan,et al.Influence of axial applied potential gradient on ion radial distribution in liquid confined in cylindrical nanotubes[J].Journal of Southeast University (Natural Science Edition),2008,38(1):683.[doi:10.3969/j.issn.1001-0505.2008.04.027]
[2]蒋洁,周宾,郝英立.压-电场耦合下纳米尺度水输运的MD模拟[J].东南大学学报(自然科学版),2011,41(4):757.[doi:10.3969/j.issn.1001-0505.2011.04.019]
 Jiang Jie,Zhou Bin,Hao Yingli.MD simulation of nanoscale water flow under coupled pressure-electric fields[J].Journal of Southeast University (Natural Science Edition),2011,41(1):757.[doi:10.3969/j.issn.1001-0505.2011.04.019]
[3]陈丽换,张国栋,陈云飞.纳米尺度下对黏滑现象的分子动力学模拟[J].东南大学学报(自然科学版),2010,40(1):128.[doi:10.3969/j.issn.1001-0505.2010.01.024]
 Chen Lihuan,Zhang Guodong,Chen Yunfei.Molecular dynamics simulation of stick-slip at nanoscale[J].Journal of Southeast University (Natural Science Edition),2010,40(1):128.[doi:10.3969/j.issn.1001-0505.2010.01.024]
[4]董赟,刘晨晗,段早琦,等.石墨烯的摩擦力和刚度关系的分子动力学模拟[J].东南大学学报(自然科学版),2017,47(1):28.[doi:10.3969/j.issn.1001-0505.2017.01.006]
 Dong Yun,Liu Chenhan,Duan Zaoqi,et al.Molecular dynamics simulations of stiffness-dependent friction of graphene[J].Journal of Southeast University (Natural Science Edition),2017,47(1):28.[doi:10.3969/j.issn.1001-0505.2017.01.006]

备注/Memo

备注/Memo:
收稿日期: 2013-04-30.
作者简介: 孙颖(1988—),女,硕士生;吕晓迎(联系人),女,博士,教授,博士生导师,luxy@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(31271012).
引用本文: 孙颖,丁佳丽,宗皓,等.白蛋白和石墨烯的结构及其相互作用的分子动力学模拟[J].东南大学学报:自然科学版,2014,44(1):123-128. [doi:10.3969/j.issn.1001-0505.2014.01.022]
更新日期/Last Update: 2014-01-20