[1]王育江,刘加平,田倩,等.水泥基材料的塑性抗拉强度[J].东南大学学报(自然科学版),2014,44(2):369-374.[doi:10.3969/j.issn.1001-0505.2014.02.025]
 Wang Yujiang,Liu Jiaping,Tian Qian,et al.Tensile strength of cement based materials at plastic stage[J].Journal of Southeast University (Natural Science Edition),2014,44(2):369-374.[doi:10.3969/j.issn.1001-0505.2014.02.025]
点击复制

水泥基材料的塑性抗拉强度()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
44
期数:
2014年第2期
页码:
369-374
栏目:
材料科学与工程
出版日期:
2014-03-20

文章信息/Info

Title:
Tensile strength of cement based materials at plastic stage
作者:
王育江1刘加平12田倩1李华1
1江苏省建筑科学研究院有限公司高性能土木工程材料国家重点实验室, 南京 211103; 2东南大学材料科学与工程学院, 南京 211189
Author(s):
Wang Yujiang1 Liu Jiaping12 Tian Qian1 Li Hua1
1State Key Laboratory of High Performance Civil Engineering Materials, Jiangsu Research Institute of Building Science, Nanjing 211103, China
2School of Materials Science and Engineering, Southeast University, Nanjing 211189, Chin
关键词:
水泥基材料 塑性收缩开裂 毛细管负压 塑性抗拉强度
Keywords:
cement based materials plastic shrinkage and cracking capillary pressure tensile strength at plastic stage
分类号:
TU528.01
DOI:
10.3969/j.issn.1001-0505.2014.02.025
摘要:
为了研究水泥基材料塑性抗拉强度的增长规律, 选取水泥浆体和粉煤灰浆体, 对塑性阶段的毛细管负压、塑性收缩、饱和度及抗拉强度进行了试验研究, 并基于固-液-气三相有效作用力对塑性抗拉强度和毛细管负压间关系进行了分析. 结果表明:当毛细管负压小于70 kPa时, 水泥基材料体系处于近似饱和的毛细管状;试验所选的2种浆体塑性抗拉强度增长规律基本一致,即在毛细管负压达到20 kPa左右前, 塑性抗拉强度随毛细管负压的增加而显著增加,其后则趋于稳定;基于理想堆积体系中液相有效作用力计算出的抗拉强度明显大于试验测试结果. 在考虑体系存在缺陷的基础上,推荐了塑性抗拉强度的增长规律方程.
Abstract:
Cement paste and fly ash paste were used to determine the growth law of the tensile strength of cement base materials at the plastic stage. The capillary pressure, plastic shrinkage, saturation and tensile strength of the paste were studied. Furthermore, the relationship between the tensile strength at the plastic stage and the capillary pressure of the paste was analyzed based on the investigation of the effective force among the phases of solid, liquid and gas. The results show that the liquid-phase is continuous and at approximate saturation when the capillary pressure is less than 70 kPa. The growth law of the two pastes used in this study are similar; that is, when the capillary pressure is less than the critical value of about 20 kPa, the tensile strength increases dramatically with the increase in the capillary pressure, and, thereafter, it tends to be stable. The calculation results of the tensile strength based on the effective stress of the liquid phase in the unflawed granular system are higher than the experimental results of the real system. Furthermore, based on the consideration of the flaw of the real system,an exponential law is proposed to analyze the evolution of the tensile strength.

参考文献/References:

[1] Hammer T A. Effect of silica fume on the plastic shrinkage and pore water pressure of high-strength concretes[J]. Materials and Structures, 2011, 34(5): 273-278.
[2] ACI Committee. ACI 305R-99 hot weather concreting [S]. Farmington Hills,MI,USA: American Concrete Institute, 1999.
[3] Wittmann F H. On the action of capillary pressure in fresh concrete[J]. Cement and Concrete Research, 1976, 6(1): 49-56.
[4] Lura P, Pease B, Mazzotta G, et al. Influence of shrinkage-reducing admixtures on development of plastic shrinkage cracks[J]. ACI Materials Journal, 2007, 104(2): 187-194.
[5] Bentz D P, Garboczi E J, Quenard D A. Modelling drying shrinkage in reconstructed porous materials: application to porous vycor glass[J]. Modelling Simulation in Material Science and Engineering, 1998, 6(3): 211-236.
[6] Iveson S M, Litster J D, Hapgood K, et al. Nucleation, growth and breakage phenomena in agitated wet granulation processes: a review[J]. Powder Technology, 2001, 117(1/2): 31-39.
[7] Pierrat P,Caram H S.Tensile strength of wet granular materials[J].Powder Technology, 1997,91(2):83-93.
[8] Schubert H. Capillary forces-modeling and application in particulate technology[J]. Powder Technology, 1984, 37(6): 105-116.
[9] Liu J P, Tian Q, Miao C W. Investigation on the plastic shrinkage of cementitious materials under drying conditions: mechanism and theoretical model[J]. Magazine of Concrete Research, 2012, 64(6): 551-561.
[10] Miao C, Tian Q, Sun W, et al. Water consumption of the early-age paste and the determination of time-zero of self-desiccation shrinkage[J]. Cement and Concrete Research, 2007, 37(11): 1496-1501.
[11] Tian Q, Wang Y J, Guo F, et al. A smart initial curing procedure based on pore water under pressure measurement[C]//International RILEM Conference on Use of Superabsorbent Polymers and Other New Additives in Concrete. Copenhagen, Denmark, 2010: 273-284.
[12] Volker S, Markus S, Roberto F. Capillary pressure in fresh cement-based materials and identification of the air entry value[J]. Cement and Concrete Composites, 2008, 30(7):557-565.
[13] Slowik V, Hübner T, Schmidt M, et al. Simulation of capillary shrinkage cracking in cement-like materials[J]. Cement and Concrete Composites, 2009, 31(7): 461-469.
[14] Snyder V A, Miller R D. Tensile strength of unsaturated soils[J]. Soil Science Society of America Journal, 1985, 49(1): 58-65.
[15] Peron H, Laloui L, Hueckel T. Desiccation cracking of soils[J]. European Journal of Civil and Environmental Engineering, 2009, 13(7/8): 869-888.
[16] Peron H. Desiccation cracking of soils[D]. Lausanne, Switzerland: Ecole Polytechnique Fédérale de Lausanne, 2008.

相似文献/References:

[1]高礼雄,杜雪刚,孔丽娟.石灰石粉对水泥基材料抗碳硫硅钙石侵蚀破坏的定量分析[J].东南大学学报(自然科学版),2012,42(3):483.[doi:10.3969/j.issn.1001-0505.2012.03.017]
 Gao Lixiong,Du Xuegang,Kong Lijuan.Quantitative analysis of effect of limestone powder on resistance of thaumasite attack to cement-based materials[J].Journal of Southeast University (Natural Science Edition),2012,42(2):483.[doi:10.3969/j.issn.1001-0505.2012.03.017]
[2]肖海军,孙伟,蒋金洋,等.水泥基材料微结构的反复压汞法表征[J].东南大学学报(自然科学版),2013,43(2):371.[doi:10.3969/j.issn.1001-0505.2013.02.027]
 Xiao Haijun,Sun Wei,Jiang Jinyang,et al.Characterization of microstructure of cement-based materials by multi-cycle-MIP method[J].Journal of Southeast University (Natural Science Edition),2013,43(2):371.[doi:10.3969/j.issn.1001-0505.2013.02.027]
[3]周伟玲,孙伟,陈翠翠,等.应用纳米压痕技术表征水泥基材料微观力学性能[J].东南大学学报(自然科学版),2011,41(2):370.[doi:10.3969/j.issn.1001-0505.2011.02.030]
 Zhou Weiling,Sun Wei,Chen Cuicui,et al.Characterization for micro mechanical properties of cementitious materials by nanoindentation technique[J].Journal of Southeast University (Natural Science Edition),2011,41(2):370.[doi:10.3969/j.issn.1001-0505.2011.02.030]
[4]张亚梅,余保英.掺超细矿粉水泥基材料早龄期水化产物及孔结构特性[J].东南大学学报(自然科学版),2011,41(4):815.[doi:10.3969/j.issn.1001-0505.2011.04.030]
 Zhang Yamei,Yu Baoying.Characteristics of hydration products and pore structure in cement-based material with ultra fine slag at early ages[J].Journal of Southeast University (Natural Science Edition),2011,41(2):815.[doi:10.3969/j.issn.1001-0505.2011.04.030]
[5]刘巧玲,孙伟,孙波,等.碳纳米管水性分散体的制备及其对水泥砂浆强度的影响[J].东南大学学报(自然科学版),2014,44(3):662.[doi:10.3969/j.issn.1001-0505.2014.03.037]
 Liu Qiaoling,Sun Wei,et al.Preparation of carbon nanotubes solution and its effects on mechanical properties of cement mortar[J].Journal of Southeast University (Natural Science Edition),2014,44(2):662.[doi:10.3969/j.issn.1001-0505.2014.03.037]
[6]占华刚,潘钢华,王宇东.加速碳化条件下混凝土界面过渡区微结构[J].东南大学学报(自然科学版),2015,45(3):569.[doi:10.3969/j.issn.1001-0505.2015.03.027]
 Zhan Huagang,Pan Ganghua,Wang Yudong.Microstructure of interface transition zone in concrete under accelerated carbonation[J].Journal of Southeast University (Natural Science Edition),2015,45(2):569.[doi:10.3969/j.issn.1001-0505.2015.03.027]
[7]沈奇真,潘钢华,占华刚,等.加速碳化条件下界面过渡区的纳米力学性能[J].东南大学学报(自然科学版),2016,46(1):146.[doi:10.3969/j.issn.1001-0505.2016.01.024]
 Shen Qizhen,Pan Ganghua,Zhan Huagang,et al.Nanomechanical properties of interfacial transition zone under accelerated carbonation[J].Journal of Southeast University (Natural Science Edition),2016,46(2):146.[doi:10.3969/j.issn.1001-0505.2016.01.024]
[8]常洪雷,金祖权.无碳化影响时干湿交替下水泥基材料中氯离子传输行为[J].东南大学学报(自然科学版),2019,49(6):1153.[doi:10.3969/j.issn.1001-0505.2019.06.019]
 Chang Honglei,Jin Zuquan.Chloride transport behavior in cementitious-based materials under cyclic drying-wetting condition without influence of carbonation[J].Journal of Southeast University (Natural Science Edition),2019,49(2):1153.[doi:10.3969/j.issn.1001-0505.2019.06.019]

备注/Memo

备注/Memo:
收稿日期: 2013-07-21.
作者简介: 王育江(1985—), 男, 工程师; 刘加平(联系人), 男, 博士,教授, 博士生导师, liujiaping@cnjsjk.cn.
基金项目: 国家杰出青年科学基金资助项目(51225801)、江苏省自然科学基金资助项目(BK2012868).
引用本文: 王育江,刘加平,田倩,等.水泥基材料的塑性抗拉强度[J].东南大学学报:自然科学版,2014,44(2):369-374. [doi:10.3969/j.issn.1001-0505.2014.02.025]
更新日期/Last Update: 2014-03-20