[1]刘巧玲,孙伟,孙波,等.碳纳米管水性分散体的制备及其对水泥砂浆强度的影响[J].东南大学学报(自然科学版),2014,44(3):662-667.[doi:10.3969/j.issn.1001-0505.2014.03.037]
 Liu Qiaoling,Sun Wei,et al.Preparation of carbon nanotubes solution and its effects on mechanical properties of cement mortar[J].Journal of Southeast University (Natural Science Edition),2014,44(3):662-667.[doi:10.3969/j.issn.1001-0505.2014.03.037]
点击复制

碳纳米管水性分散体的制备及其对水泥砂浆强度的影响()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
44
期数:
2014年第3期
页码:
662-667
栏目:
材料科学与工程
出版日期:
2014-05-16

文章信息/Info

Title:
Preparation of carbon nanotubes solution and its effects on mechanical properties of cement mortar
作者:
刘巧玲12孙伟1孙波3孙晓波2贾立群2马正先2
1东南大学材料科学与工程学院, 南京211189; 2山东建筑大学土木工程学院, 济南250101; 3济南市工程质量与安全生产监督站历城分站, 济南250101
Author(s):
Liu Qiaoling1 2 Sun Wei1 Sun Bo3 Sun Xiaobo2 Jia Liqun2 Ma Zhengxian2
1School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
2School of Civil Engineering, Shandong Jianzhu University, Jinan 250101, China
3Licheng Supervision Station, Jinan Construct
关键词:
水泥基材料 碳纳米管 水性分散体 力学性能 微结构
Keywords:
cement mortar carbon nanotubes water-borne dispersion mechanical property microstructure
分类号:
TU52
DOI:
10.3969/j.issn.1001-0505.2014.03.037
摘要:
为了研究碳纳米管及其分散性对水泥砂浆性能的影响,分别采用聚乙烯毗咯烷酮(PVP)和十二烷基磺酸钠(SDBS)两种分散剂制备了不同浓度的碳纳米管水性分散体,探讨了不同碳纳米管水性分散体对水泥砂浆强度及微结构性能的影响.实验结果表明:分散剂对碳纳米管在水中的分散效果影响显著,与SDBS相比,采用PVP为分散剂的碳纳米管水性分散体分散性和稳定性更好;分散性良好的碳纳米管能改善水泥砂浆微结构,提高水泥砂浆的抗压、抗折强度,具有较好的增强效果,当碳纳米管掺量为0.5%时,水泥砂浆28 d抗折强度和抗压强度分别提高了49.4%和40.8%.
Abstract:
In order to study the effects of carbon nanotubes(CNTs)and their dispersion on the performance of cement mortars, the aqueous dispersions of carbon nanotubes are prepared using polyvinylpyrrolidone(PVP)and sodium dodecyl benzene sulfonate(SDBS)as dispersant, respectively, and their influences on the mechanical and microstructural properties of cement mortars are studied. The experimental results show that dispersant can significantly affect the dispersion of carbon nanotubes in water. Compared with SDBS as dispersant, the CNTs solution with PVP as dispersant has more uniform dispersion and higher stability. In addition, highly dispersed carbon nanotubes can densify paste microstructure and improve cement mortar’s mechanical properties as well. 0.5% addition of CNTs can improve the flexural and compressive strength of cement mortars at 28 d by 49.4% and 40.8%, respectively.

参考文献/References:

[1] Konsta-Gdoutos M S, Metaxa Z S, Shah S P. Multi-scale mechanical and fracture characteristics and early-age strain capacity of high performance carbon nanotube/cement nanocomposites[J]. Cement and Concrete Composites, 2010, 32(2):110-115.
[2] Makar J M, Margeson J, Luh J. Carbon nanotube/cement composites-early results and potential applications [C/OL]//Proceedings of 3rd International Conference on Construction Materials: Performance, Innovations and Structural Implications. Vancouver, BC, USA, 2005. http://nparc.cisti-icist.nrc-cnrc.gc.ca/npsi/ctrl?action=rtdoc&an=20377873.
[3] Salvetat J P, Bonard J M, Thomson N H, et al. Mechanical properties of carbon nanotubes[J]. Applied Physics A, 1999, 69(3):255-260.
[4] Shah S P, Konsta-Gdoutos M S, Metaxa Z S, et al. Nanoscale modification of cementitious materials[C]//Proceedings of the Third International Symposium on Nanotechnology in Construction. Prague, Czech Republic, 2009: 125-130.
[5] Cwirzen A, Habermehl-Cwirzen K, Penttala V. Surface decoration of carbon nanotubes and mechanical properties of cement/carbon nanotube composites[J]. Advances in Cement Research, 2008, 20(2):65-73.
[6] Cwirzen A, Habermehl-Cwirzen K, Nasibulina L I, et al. CHH cement composite[C]//Proceedings of the Third International Symposium on Nanotechnology in Construction. Prague, Czech Republic, 2009: 181-185.
[7] 李庚英, 王培铭. 碳纳米管-水泥基复合材料的力学性能和微观结构[J].硅酸盐学报, 2005, 33(1): 105-108.
  Li Gengying, Wang Peiming. Microstructure and mechanical properties of caron nanotubes cement matrix composites[J]. Journal of the Chinese Ceramic Society, 2005, 33(1): 105-108.(in Chinese)
[8] 徐世烺, 高良丽, 晋卫军. 定向多壁碳纳米管-M140砂浆复合材料的力学性能[J].中国科学E辑: 技术科学, 2009, 39(7): 1228-1236.
  Xu Shilang, Gao Liangli, Jin Weijun. The mechanical properties of aligned multi-walled carbon nanotubes M140 mortar composites[J]. Science in China Series E: Technological Sciences, 2009, 39(7): 1228-1236.(in Chinese)
[9] 罗建林. 碳纳米管水泥基复合材料制备及功能性能研究[D]. 哈尔滨:哈尔滨工业大学土木工程学院, 2009.
[10] Konsta-Gdoutos M S, Metaxa Z S, Shah S P. Highly dispersed carbon nanotube reinforced cement based materials[J]. Cement and Concrete Research, 2010, 40(7):1052-1059.
[11] Metaxa Z S, Konsta-Gdoutos M S, Shah S P. Carbon nanofiber-reinforced cement based materials[J]. Transportation Research Record, 2010, 2142:114-118.
[12] Shah S P, Konsta-Gdoutos M S, Metaxa Z S. Exploration of fracture characteristics, nanoscale properties and nanostructure of cementitious matrices with carbon nanotubes and carbon nanofibers[C/OL]//Proceedings of the 7th International Conference on Fracture Mechanics of Concrete and Concrete Structures. Jeju, Republic of Korea, 2010. http://www.framcos.org/FraMCoS-7/01-02.pdf.
[13] Abu Al-Rub R K, Tyson B M, Yazdanbakhsh A, et al. Mechanical properties of nanocomposite cement incorporating surface-treated and untreated carbon nanotubes and carbon nanofibers[J]. ASCE J Nanomech Micromech, 2012, 2(1): 1-6.
[14] Morsy M S, Alsayed S H, Aqel M. Hybrid effect of carbon nanotube and nanoclay on physico-mechanical properties of cement mortar[J]. Construction and Building Materials, 2011, 25(1): 145-149.
[15] Luo J L, Duan Z D, Zhao T J, et al. Effect of multi-wall carbon nanotube on fracture mechanical property of cement-based composite[J]. Advanced Materials Research, 2011, 146-147: 581-584.
[16] 全国水泥标准化技术委员会.GB/T 17671—1999水泥胶砂强度检验方法(ISO法)[S].北京: 中国标准出版社,1999.
[17] Yazdanbakhsh A, Grasley Z. The theoretical maximum achievable dispersion of nanoinclusions in cement paste[J]. Cement and Concrete Research, 2012, 42(6): 798-804.

相似文献/References:

[1]高礼雄,杜雪刚,孔丽娟.石灰石粉对水泥基材料抗碳硫硅钙石侵蚀破坏的定量分析[J].东南大学学报(自然科学版),2012,42(3):483.[doi:10.3969/j.issn.1001-0505.2012.03.017]
 Gao Lixiong,Du Xuegang,Kong Lijuan.Quantitative analysis of effect of limestone powder on resistance of thaumasite attack to cement-based materials[J].Journal of Southeast University (Natural Science Edition),2012,42(3):483.[doi:10.3969/j.issn.1001-0505.2012.03.017]
[2]肖海军,孙伟,蒋金洋,等.水泥基材料微结构的反复压汞法表征[J].东南大学学报(自然科学版),2013,43(2):371.[doi:10.3969/j.issn.1001-0505.2013.02.027]
 Xiao Haijun,Sun Wei,Jiang Jinyang,et al.Characterization of microstructure of cement-based materials by multi-cycle-MIP method[J].Journal of Southeast University (Natural Science Edition),2013,43(3):371.[doi:10.3969/j.issn.1001-0505.2013.02.027]
[3]周伟玲,孙伟,陈翠翠,等.应用纳米压痕技术表征水泥基材料微观力学性能[J].东南大学学报(自然科学版),2011,41(2):370.[doi:10.3969/j.issn.1001-0505.2011.02.030]
 Zhou Weiling,Sun Wei,Chen Cuicui,et al.Characterization for micro mechanical properties of cementitious materials by nanoindentation technique[J].Journal of Southeast University (Natural Science Edition),2011,41(3):370.[doi:10.3969/j.issn.1001-0505.2011.02.030]
[4]张亚梅,余保英.掺超细矿粉水泥基材料早龄期水化产物及孔结构特性[J].东南大学学报(自然科学版),2011,41(4):815.[doi:10.3969/j.issn.1001-0505.2011.04.030]
 Zhang Yamei,Yu Baoying.Characteristics of hydration products and pore structure in cement-based material with ultra fine slag at early ages[J].Journal of Southeast University (Natural Science Edition),2011,41(3):815.[doi:10.3969/j.issn.1001-0505.2011.04.030]
[5]王育江,刘加平,田倩,等.水泥基材料的塑性抗拉强度[J].东南大学学报(自然科学版),2014,44(2):369.[doi:10.3969/j.issn.1001-0505.2014.02.025]
 Wang Yujiang,Liu Jiaping,Tian Qian,et al.Tensile strength of cement based materials at plastic stage[J].Journal of Southeast University (Natural Science Edition),2014,44(3):369.[doi:10.3969/j.issn.1001-0505.2014.02.025]
[6]占华刚,潘钢华,王宇东.加速碳化条件下混凝土界面过渡区微结构[J].东南大学学报(自然科学版),2015,45(3):569.[doi:10.3969/j.issn.1001-0505.2015.03.027]
 Zhan Huagang,Pan Ganghua,Wang Yudong.Microstructure of interface transition zone in concrete under accelerated carbonation[J].Journal of Southeast University (Natural Science Edition),2015,45(3):569.[doi:10.3969/j.issn.1001-0505.2015.03.027]
[7]沈奇真,潘钢华,占华刚,等.加速碳化条件下界面过渡区的纳米力学性能[J].东南大学学报(自然科学版),2016,46(1):146.[doi:10.3969/j.issn.1001-0505.2016.01.024]
 Shen Qizhen,Pan Ganghua,Zhan Huagang,et al.Nanomechanical properties of interfacial transition zone under accelerated carbonation[J].Journal of Southeast University (Natural Science Edition),2016,46(3):146.[doi:10.3969/j.issn.1001-0505.2016.01.024]
[8]常洪雷,金祖权.无碳化影响时干湿交替下水泥基材料中氯离子传输行为[J].东南大学学报(自然科学版),2019,49(6):1153.[doi:10.3969/j.issn.1001-0505.2019.06.019]
 Chang Honglei,Jin Zuquan.Chloride transport behavior in cementitious-based materials under cyclic drying-wetting condition without influence of carbonation[J].Journal of Southeast University (Natural Science Edition),2019,49(3):1153.[doi:10.3969/j.issn.1001-0505.2019.06.019]

备注/Memo

备注/Memo:
收稿日期: 2013-10-11.
作者简介: 刘巧玲(1977—),女,博士生,讲师;孙伟(联系人),女,教授,博士生导师,中国工程院院士,sunwei@seu.edu.cn.
基金项目: 国家重点基础研究发展计划(973计划)资助项目(2009CB623200)、长江学者和创新团队发展计划资助项目(IRT13075).
引用本文: 刘巧玲,孙伟,孙波,等.碳纳米管水性分散体的制备及其对水泥砂浆强度的影响[J].东南大学学报:自然科学版,2014,44(3):662-667. [doi:10.3969/j.issn.1001-0505.2014.03.037]
更新日期/Last Update: 2014-05-20