[1]宋翔,汤文成,李旭,等.基于两级滤波的车辆相对加速度估计[J].东南大学学报(自然科学版),2015,45(1):51-55.[doi:10.3969/j.issn.1001-0505.2015.01.010]
 Song Xiang,Tang Wencheng,Li Xu,et al.Estimation of vehicle relative acceleration based on two-level filter[J].Journal of Southeast University (Natural Science Edition),2015,45(1):51-55.[doi:10.3969/j.issn.1001-0505.2015.01.010]
点击复制

基于两级滤波的车辆相对加速度估计()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
45
期数:
2015年第1期
页码:
51-55
栏目:
交通运输工程
出版日期:
2015-01-20

文章信息/Info

Title:
Estimation of vehicle relative acceleration based on two-level filter
作者:
宋翔1汤文成2李旭1张为公1
1东南大学仪器科学与工程学院, 南京210096; 2东南大学机械工程学院, 南京210096
Author(s):
Song Xiang1 Tang Wencheng2 Li Xu1 Zhang Weigong1
1School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China
2School of Mechanical Engineering, Southeast University, Nanjing 210096, China
关键词:
智能交通 相对加速度估计 两级卡尔曼滤波 误差修正 防追尾碰撞系统
Keywords:
intelligent transportation relative acceleration estimation two-level Kalman filter error correction rear-end collision avoidance system
分类号:
U467.4
DOI:
10.3969/j.issn.1001-0505.2015.01.010
摘要:
针对智能交通中汽车防追尾碰撞预警技术难以准确获取车辆间相对加速度,从而影响预警准确性的不足,提出了一种基于两级卡尔曼滤波的相对加速度估计方法.首先建立准确描述车辆间相对加速度变化的车辆相对运动模型,利用卡尔曼滤波递推方法初步估计出相对加速度值.然后进一步结合相对速度信息,利用第二级卡尔曼滤波估计相对加速度的误差,对初步估计的相对加速度值进行修正,从而获取较为准确的相对加速度信息.实车试验结果表明,该方法的准确性和可靠性好,加速度估计误差小于0.5 m/s2.
Abstract:
The accurate relative acceleration is difficult to obtain by vehicle rear-end collision warning algorithm in intelligent transportation. In order to meet the accurate requirement of the relative acceleration, an estimation method based on two-level Kalman filter is proposed. The relative motion model of vehicles is established, which can accurately describe the relative acceleration changes. The relative acceleration is preliminary estimated by using Kalman filter. Then the relative speed is employed to estimate the relative acceleration error by using the second level Kalman filter. Therefore, the preliminary estimation results of relative acceleration can be corrected. And an accurate and reliable relative acceleration is accurately and reliablely obtained. The real vehicle test results show that the proposed estimation method has advantages with high accuracy, good reliability and strong adaptability. The acceleration estimation error is less than 0.5 m/s2.

参考文献/References:

[1] Chang T H, Hsu C S, Wang C, et al. Onboard measurement and warning module for irregular vehicle behavior[J]. IEEE Trans Intell Transport Syst, 2008, 9(3): 501-513.
[2] Jansson J, Gustafsson F. A framework and automotive application of collision avoidance decision making[J]. Automatica, 2008, 44(9):2347-2351.
[3] Toledo-Moreo R, Zamora-Izquierdo M A. Collision avoidance support in roads with lateral and longitudinal maneuver prediction by fusing GPS/IMU and digital maps[J]. Transportation Research Part C: Emerging Technologies, 2010, 18(4): 611-625.
[4] Taleb T, Benslimane A, Ben Letaief K. Toward an effective risk-conscious and collaborative vehicular collision avoidance system[J]. IEEE Trans Vehicle Tech, 2010, 59(3): 1474-1486.
[5] Park S, Hwang J P, Kim E, et al. Vehicle tracking using a microwave radar for situation awareness[J]. Control Engineering Practice, 2010, 18(4): 383-395.
[6] Edelmayer A, Miranda M, Nebehaj V. Cooperative federated filtering approach for enhanced position estimation and sensor fault tolerance in ad-hoc vehicle networks[J]. IET Trans Intell Transport, 2009, 4(1): 82-92.
[7] Gustafsson F, Gunnarsson F, Bergman N, et al. Particle filters for positioning, navigation and tracking[J]. IEEE Trans Signal Processing, 2002, 50(2): 425-437.
[8] Kim Y S, Hong K S. An IMM algorithm for tracking maneuvering vehicles in an adaptive cruise control environment[J]. International Journal of Control Automation and Systems, 2004, 2(3): 310-318.
[9] Rodriguez S A F, Frémont V, Bonnifait P, et al. An embedded multi-modal system for object localization and tracking[J]. IEEE Intelligent Transportation Systems Magazine, 2012, 4(4): 42-53.
[10] 李旭,宋翔,张为公.基于扩展卡尔曼滤波的车辆状态可靠估计[J].东南大学学报:自然科学版,2014,44(4):740-744.
  Li Xu,Song Xiang,Zhang Weigong.Reliable vehicle state estimation based on improved extended Kalman filter[J].Journal of Southeast University:Natural Science Edition,2014,44(4):740-744.(in Chinese)

相似文献/References:

[1]江晟,王殿海,陈永恒,等.基于视频的行人运动轨迹再现与过街行为表达[J].东南大学学报(自然科学版),2012,42(6):1233.[doi:10.3969/j.issn.1001-0505.2012.06.038]
 Jiang Sheng,Wang Dianhai,Chen Yongheng,et al.Pedestrian movement trajectory reappearance and crossing feature expression based on video processing[J].Journal of Southeast University (Natural Science Edition),2012,42(1):1233.[doi:10.3969/j.issn.1001-0505.2012.06.038]
[2]彭博,蔡晓禹,张有节,等.基于对称帧差和分块背景建模的无人机视频车辆自动检测[J].东南大学学报(自然科学版),2017,47(4):685.[doi:10.3969/j.issn.1001-0505.2017.04.010]
 Peng Bo,Cai Xiaoyu,Zhang Youjie,et al.Automatic vehicle detection from UAV videos based on symmetrical frame difference and background block modeling[J].Journal of Southeast University (Natural Science Edition),2017,47(1):685.[doi:10.3969/j.issn.1001-0505.2017.04.010]

备注/Memo

备注/Memo:
收稿日期: 2014-09-09.
作者简介: 宋翔(1984—),男,博士; 李旭(联系人),男,博士,副教授,博士生导师, lixu.mail@163.com.
基金项目: 国家自然科学基金资助项目(61273236)、江苏省自然科学基金资助项目(BK2010239)、 江苏省博士后科研资助项目(1401012C).
引用本文: 宋翔,汤文成,李旭,等.基于两级滤波的车辆相对加速度估计[J].东南大学学报:自然科学版,2015,45(1):51-55. [doi:10.3969/j.issn.1001-0505.2015.01.010]
更新日期/Last Update: 2015-01-20