[1]李自林,邢颖,韩庆华,等.弹性混凝土与钢组合梁的疲劳性能分析及寿命预测[J].东南大学学报(自然科学版),2015,45(1):165-171.[doi:10.3969/j.issn.1001-0505.2015.01.029]
 Li Zilin,Xing Ying,Han Qinghua,et al.Fatigue behavior analysis and life prediction of elastic concrete and steel composite beam[J].Journal of Southeast University (Natural Science Edition),2015,45(1):165-171.[doi:10.3969/j.issn.1001-0505.2015.01.029]
点击复制

弹性混凝土与钢组合梁的疲劳性能分析及寿命预测()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
45
期数:
2015年第1期
页码:
165-171
栏目:
土木工程
出版日期:
2015-01-20

文章信息/Info

Title:
Fatigue behavior analysis and life prediction of elastic concrete and steel composite beam
作者:
李自林12邢颖1韩庆华13郭琪1
1天津大学建筑工程学院, 天津300072; 2天津城建大学天津市软土特性与工程环境重点实验室, 天津300384; 3天津大学滨海土木工程结构与安全教育部重点实验室, 天津300072
Author(s):
Li Zilin12 Xing Ying1 Han Qinghua13 Guo Qi1
1 School of Civil Engineering, Tianjin University, Tianjin 300072, China
2 Tianjin Key Laboratory of Soft Soil Characteristics and Engineering Environment, Tianjin Institute of Urban Construction, Tianjin 300384, China
3 Key Laboratory of Coast Civil Structure Safety of Ministry of Education, Tianjin University, Tianjin 300072, China
关键词:
组合结构 数值模拟 疲劳性能 弹性混凝土 疲劳寿命 应力集中系数
Keywords:
composite structure numerical simulation fatigue behavior elastic concrete fatigue life stress concentration factor
分类号:
TU398
DOI:
10.3969/j.issn.1001-0505.2015.01.029
摘要:
基于8个组合梁试件的疲劳试验结果,采用有限元计算与名义应力法相结合的方法,提出用于模拟滑移和疲劳破坏过程的精细有限元模型和计算方法.研究了混凝土中不同橡胶掺量对组合梁极限承载力、最大滑移、栓钉应力及破坏特征的影响,得到相应的应力-疲劳寿命曲线.结果表明,简支组合梁的疲劳破坏首先发生在端部栓钉,破坏过程为栓钉依次断裂.虽然疲劳断裂为脆性破坏,但组合梁在疲劳荷载作用下的整体破坏具有一定的延性.使用弹性混凝土代替普通混凝土后,组合梁的极限承载力和刚度略有降低,但延性有所提高;当橡胶掺量为5%,10%和15%时,疲劳寿命分别提高约15%,64%和125%.基于非线性数值分析得到的组合梁极限承载力和疲劳寿命与试验所测结果吻合较好,为组合梁的抗疲劳设计提供了参考.
Abstract:
Based on the results of fatigue experiments of eight composite beams, a fine finite element model and a calculation method applied for simulating slip and fatigue failure process are proposed by using the method combining finite element calculation with nominal stress approach. The effects of the different rubber contents in concrete on the ultimate bearing capacity, maximum slip, stress of stud and failure characteristics of composite beams are studied, and the corresponding stress-fatigue life curves are obtained. The results show that fatigue failure of simply supported composite beam first occurs at the end stud, and spreads in proper order. Although fatigue break is brittle failure, the general demolition of composite beams under fatigue loads has some ductility. After replacing normal concrete by elastic concrete, the ultimate bearing capacity and stiffness of composite beams decreases slightly while the ductility increases. The fatigue life increases by about 15%, 64% and 125% when the volumetric fractions of rubber are 5%, 10% and 15%, respectively. The ultimate bearing capacity and fatigue life evaluated by nonlinear numerical analysis agree well with those obtained by the fatigue tests, providing valuable references for the fatigue resistant design of composite beams.

参考文献/References:

[1] Liu F, Chen G, Li L, et al. Study of impact performance of rubber reinforced concrete[J]. Construction and Building Materials, 2012, 36: 604-611.
[2] 聂建国, 王宇航. 钢-混凝土组合梁疲劳性能研究综述[J]. 工程力学, 2012, 29(6):1-11.
  Nie Jianguo, Wang Yuhang. Research status on fatigue behavior of steel-concrete composite beams[J]. Engineering Mechanics, 2012, 29(6):1-11.(in Chinese)
[3] 卫星, 李小珍, 李俊, 等. 钢箱梁斜拉桥锚拉板式索梁锚固结构的试验研究[J]. 工程力学, 2007,24(4):135-141.
  Wei Xing, Li Xiaozhen, Li Jun, et al. Experimental study on anchor-plate anchorage for cable-stayed bridges with steel box girder[J]. Engineering Mechanics, 2007,24(4):135-141.(in Chinese)
[4] Lee P G, Shim C S, Chang S P. Static and fatigue behavior of large stud shear connector for steel-concrete composite bridges[J]. Journal of Constructional Steel Research, 2005, 61(9): 1270-1285.
[5] Hanswille G, Porsch M, Ustundag C. Resistance of headed studs subjected to fatigue loading: part Ⅰ: experimental study[J]. Journal of Constructional Steel Research, 2007, 63(4): 475-484.
[6] Badie S S, Morgan Girgis A F, Tadros M K, et al. Full-scale testing for composite slab/beam systems made with extended stud spacing[J]. Journal of Bridge Engineering, 2011, 16(5): 653-661
[7] 赵少汴,王忠保. 抗疲劳设计——方法与数据[M]. 北京:机械工业出版社,1997:35-36.
[8] Nguyen H T, Kim S E. Finite element modeling of push-out tests for large stud shear connectors [J]. Journal of Constructional Steel Research, 2009, 65(10): 1909-1920.
[9] 姜绍飞, 王鹏, 吴兆旗. 钢-混凝土组合梁疲劳性能的有限元分析[J]. 沈阳建筑大学学报, 2009, 25(1): 112-115.
  Jiang Shaofei, Wang Peng, Wu Zhaoqi. Finite element analysis on fatigue behavior of steel-concrete composite beams[J]. Journal of Shenyang Construction University, 2009, 25(1):112-115.(in Chinese)
[10] Wang Y H, Nie J G, Li J J. Study on fatigue property of steel-concrete composite beams and studs[J]. Journal of Constructional Steel Research, 2014, 94: 1-10.
[11] 张莉. 钢结构刚性梁柱节点抗震性能的研究[D]. 天津:天津大学建筑工程学院,2004.
[12] Ollgaard J G,Slutter R G, Fisher J W. Shear strength of stud connectors in lightweight and normal weight concrete[J]. AISC Engineering Journal, 1971, 8(2): 55-64.
[13] 王庆余. 橡胶集料混钢筋混凝土叠合梁受弯性能有限元分析[D]. 天津:天津大学建筑工程学院,2007.

相似文献/References:

[1]王秋颖,顾璠.DBD固体燃料液化多相介质作用机理分析[J].东南大学学报(自然科学版),2010,40(4):800.[doi:10.3969/j.issn.1001-0505.2010.04.026]
 Wang Qiuying,Gu Fan.Mechanism analysis of multiphase mediums interaction of solid fuels liquefaction by dielectric barrier discharge plasma[J].Journal of Southeast University (Natural Science Edition),2010,40(1):800.[doi:10.3969/j.issn.1001-0505.2010.04.026]
[2]耿凡,袁竹林,王宏生,等.流化床中烟丝颗粒的流动特性[J].东南大学学报(自然科学版),2009,39(5):1012.[doi:10.3969/j.issn.1001-0505.2009.05.029]
 Geng Fan,Yuan Zhulin,Wang Hongsheng,et al.Fluidization characteristics of tobacco particles in fluidized bed[J].Journal of Southeast University (Natural Science Edition),2009,39(1):1012.[doi:10.3969/j.issn.1001-0505.2009.05.029]
[3]王浩,李爱群,谢以顺,等.基于实测风谱的润扬悬索桥桥址区三维脉动风场模拟[J].东南大学学报(自然科学版),2009,39(6):1206.[doi:10.3969/j.issn.1001-0505.2009.06.023]
 Wang Hao,Li Aiqun,Xie Yishun,et al.Digital simulation of 3-dimensional turbulence wind field of Runyang Suspension Bridge based on measured wind spectra[J].Journal of Southeast University (Natural Science Edition),2009,39(1):1206.[doi:10.3969/j.issn.1001-0505.2009.06.023]
[4]艾亿谋,杜成斌,居发亮.基于电阻率的混凝土裂缝测量方法[J].东南大学学报(自然科学版),2008,38(2):289.[doi:10.3969/j.issn.1001-0505.2008.02.021]
 Ai Yimou,Du Chengbin,Ju Faliang.Concrete crack measurement by electrical resistivity[J].Journal of Southeast University (Natural Science Edition),2008,38(1):289.[doi:10.3969/j.issn.1001-0505.2008.02.021]
[5]杨迎春,陈永平,施明恒,等.恒壁温下梯形硅微通道热沉流动换热特性[J].东南大学学报(自然科学版),2008,38(4):647.[doi:10.3969/j.issn.1001-0505.2008.04.020]
 Yang Yingchun,Chen Yongping,Shi Mingheng,et al.Heat transfer in trapezoidal silicon microchannel heat sinks with constant wall temperature[J].Journal of Southeast University (Natural Science Edition),2008,38(1):647.[doi:10.3969/j.issn.1001-0505.2008.04.020]
[6]梁坤峰,彭正标,袁竹林.液-液循环流化床制冰过程的火用分析[J].东南大学学报(自然科学版),2006,36(5):774.[doi:10.3969/j.issn.1001-0505.2006.05.019]
 Liang Kunfeng,Peng Zhengbiao,Yuan Zhulin.Exergy analysis of ice-making process for liquid-liquid circulating fluidized bed[J].Journal of Southeast University (Natural Science Edition),2006,36(1):774.[doi:10.3969/j.issn.1001-0505.2006.05.019]
[7]潘华,邱洪兴.钢筋混凝土受弯构件正截面疲劳性能数值模拟[J].东南大学学报(自然科学版),2006,36(6):997.[doi:10.3969/j.issn.1001-0505.2006.06.025]
 Pan Hua,Qiu Hongxing.Numerical simulation of fatigue performance of reinforced concrete flexural components[J].Journal of Southeast University (Natural Science Edition),2006,36(1):997.[doi:10.3969/j.issn.1001-0505.2006.06.025]
[8]施明恒,王兴春,蔡辉.太阳能毛细驱动喷射式空调器性能模拟研究[J].东南大学学报(自然科学版),2005,35(1):69.[doi:10.3969/j.issn.1001-0505.2005.01.015]
 Shi Mingheng,Wang Xingchun,Cai Hui.Numerical simulation of the performance of a capillary thermal driven ejector refrigerator[J].Journal of Southeast University (Natural Science Edition),2005,35(1):69.[doi:10.3969/j.issn.1001-0505.2005.01.015]
[9]杨兰兰,屠彦,王保平.PDP放电特性二维流体数值模拟的加速方法[J].东南大学学报(自然科学版),2005,35(5):678.[doi:10.3969/j.issn.1001-0505.2005.05.005]
 Yang Lanlan,Tu Yan,Wang Baoping.Speeding up method in 2D fluid numerical simulation of PDP discharge characteristics[J].Journal of Southeast University (Natural Science Edition),2005,35(1):678.[doi:10.3969/j.issn.1001-0505.2005.05.005]
[10]高海鹰,张奇.污染物在受潮汐影响的地下水中输移的模拟[J].东南大学学报(自然科学版),2005,35(6):950.[doi:10.3969/j.issn.1001-0505.2005.06.026]
 Gao Haiying,Zhang Qi.Modeling of contaminant transport in groundwater with impact of tide[J].Journal of Southeast University (Natural Science Edition),2005,35(1):950.[doi:10.3969/j.issn.1001-0505.2005.06.026]

备注/Memo

备注/Memo:
收稿日期: 2014-06-18.
作者简介: 李自林(1953—),男,教授,博士生导师;韩庆华(联系人),男,博士,教授,博士生导师,qhhan@tju.edu.cn.
基金项目: 国家自然科学基金资助项目(51178307,51408408)、天津市自然科学基金资助项目(13JCBJC19600).
引用本文: 李自林,邢颖,韩庆华,等.弹性混凝土与钢组合梁的疲劳性能分析及寿命预测[J].东南大学学报:自然科学版,2015,45(1):165-171. [doi:10.3969/j.issn.1001-0505.2015.01.029]
更新日期/Last Update: 2015-01-20