[1]占华刚,潘钢华,王宇东.加速碳化条件下混凝土界面过渡区微结构[J].东南大学学报(自然科学版),2015,45(3):569-574.[doi:10.3969/j.issn.1001-0505.2015.03.027]
 Zhan Huagang,Pan Ganghua,Wang Yudong.Microstructure of interface transition zone in concrete under accelerated carbonation[J].Journal of Southeast University (Natural Science Edition),2015,45(3):569-574.[doi:10.3969/j.issn.1001-0505.2015.03.027]
点击复制

加速碳化条件下混凝土界面过渡区微结构()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
45
期数:
2015年第3期
页码:
569-574
栏目:
材料科学与工程
出版日期:
2015-05-20

文章信息/Info

Title:
Microstructure of interface transition zone in concrete under accelerated carbonation
作者:
占华刚1潘钢华12王宇东1
1东南大学材料科学与工程学院, 南京 211189; 2东南大学江苏省土木工程材料重点实验室, 南京 211189
Author(s):
Zhan Huagang1 Pan Ganghua12 Wang Yudong1
1School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
2Jiangsu Key Laboratory of Construction Materials, Southeast University, Nanjing 211189, China
关键词:
水泥基材料 界面过渡区 碳化 背散射图像
Keywords:
cement-based material interfacial transition zone carbonization backscattered electron image
分类号:
TU528
DOI:
10.3969/j.issn.1001-0505.2015.03.027
摘要:
为研究界面过渡区微结构在碳化过程中的演变规律,运用背散射(BSE)图像分析技术,使用灰度值统计方法,对比分析了水胶比ρ=0.53,0.35,0.23时混凝土试件中界面过渡区和基体在碳化前后的微结构特征.结果表明,当ρ=0.53,0.35时,试件界面过渡区的孔隙率分别从碳化前的24.97%和16.07%减小到碳化后的20.29%和12.27%,而当ρ=0.23时试件碳化后孔隙率则有所提高.同时,各试件界面过渡区和基体的未水化水泥含量在碳化后均有所下降.因此,在加速碳化条件下,不同水胶比试件的微结构演变规律存在较大差异,界面过渡区和基体的碳化现象也有所差别,且当ρ=0.53时两者的碳化现象最明显,ρ=0.23时碳化现象最不明显.
Abstract:
To study the microstructure evolution of the interfacial transition zone(ITZ)in the carbonization process, the microstructural features of the ITZs and the matrixes in the concrete samples before and after carbonization with the water-binder ratio ρ of 0.53, 0.35 and 0.23 are analyzed comparatively by using the gray value statistics method and the backscattered electron(BSE)image analysis technique. The results show that the porosities of the ITZs in the concrete samples reduce from 24.97% and 16.07% to 20.29% and 12.27% after carbonization when ρ=0.53 and 0.35, respectively, while it increases when ρ=0.23. Meanwhile, all of the unhydrated cement contents of the ITZs and the matrixes in the concrete samples with three kinds of water-binder ratios decrease after carbonization. Therefore, under the accelerated carbonization condition, the microstructure evolutions of the samples with different water-binder ratios are different. The carbonization appearance of the ITZs and the matrixes are also different. The carbonization appearance of the ITZ and that of the matrix are the most obvious when ρ=0.53, while they are the least obvious for when=0.23.

参考文献/References:

[1] Kenny A, Katz A. Influence of the interfacial transition zone properties on chloride corrosion in reinforced concrete-characterization of ITZ[J].Advanced Materials Research, 2010, 95: 69-72.
[2] Mondal P. Nanomechanical properties of cementitious materials [D]. Evanston, Illinois, USA: Northwest University, 2008.
[3] Zhang J X, Sun H H, Wan J H, et al. Study on microstructure and mechanical property of interfacial transition zone between limestone aggregate and Sialite paste[J]. Construction and Building Materials, 2009, 23(11): 3393-3397.
[4] 赵艳林,韦克宇,吕海波.混凝土二维骨料随机分布对物质扩散的影响[J].岩土力学,2009,30(1):52-58.
  Zhao Yanlin, Wei Keyu, Lü Haibo. Influence of two-dimensional aggregate random distribution in concrete on substance diffusion [J]. Rock and Soil Mechanics, 2009, 30(1): 52-58.(in Chinese)[5] Lizarazo-Marriaga J, Higuera C, Claisse P. Measuring the effect of the ITZ on the transport related properties of mortar using electrochemical impedance[J]. Construction and Building Materials, 2014, 52: 9-16.
[6] Maghsoodi V, Ramezanianpour A. Effects of volumetric aggregate fraction on transport properties of concrete and mortar [J]. The Arabian Journal for Science and Engineering, 2009, 34(2B): 327-335.
[7] Yao Y, Wu H, Wang L. The microstructure research on interfacial transition zone of filling material containing FA and coal gangue[J]. Advanced Materials Research, 2011, 287-290: 1125-1129.
[8] 何小芳,缪昌文,张云升,等.水泥基材料界面过渡区结构及其性能的分析方法综述[J].混凝土,2009(10):19-23.
  He Xiaofang, Miao Changwen, Zhang Yunsheng, et al. Analysis methods about structure and its performance of interfacial transition zone(ITZ)[J]. Concrete, 2009(10): 19-23.(in Chinese)
[9] Leemann A, Münch B,Gasser P, et al. Influence of compaction on the interfacial transition zone and the permeability of concrete [J]. Cement and Concrete Research, 2006, 36(8): 1425-1433.
[10] Jiang J Y, Sun G W, Wang C H. Numerical calculation on the porosity distribution and diffusion coefficient of interfacial transition zone in cement-based composite materials[J]. Construction and Building Materials, 2013, 39: 134-138.
[11] 陈伟,田亚坡,周紫晨.粉煤灰混凝土抗碳化性能及显微硬度分析[J].武汉理工大学学报,2009,31(11):48-51.
  Chen Wei, Tian Yapo, Zhou Zichen. Carbonation of fly ash concrete and mircro-hardness analysis[J]. Journal of Wuhan University of Technology, 2009, 31(11): 48-51.(in Chinese)
[12] 王培铭,丰曙霞,刘贤萍.用于背散射电子图像分析的水泥浆体抛光样品制备[J].硅酸盐学报,2013,41(2):211-217.
  Wang Peiming, Feng Shuxia, Liu Xianping. Preparation of flat-polished specimens of cement paste for backscattered electron imaging and analysis [J]. Journal of the Chinese Ceramic Society, 2013, 41(2): 211-217.(in Chinese)
[13] 邱晨.混凝土界面过渡区的定量表征及弹性性能[D].南京:东南大学材料科学与工程学院,2012.

相似文献/References:

[1]高礼雄,杜雪刚,孔丽娟.石灰石粉对水泥基材料抗碳硫硅钙石侵蚀破坏的定量分析[J].东南大学学报(自然科学版),2012,42(3):483.[doi:10.3969/j.issn.1001-0505.2012.03.017]
 Gao Lixiong,Du Xuegang,Kong Lijuan.Quantitative analysis of effect of limestone powder on resistance of thaumasite attack to cement-based materials[J].Journal of Southeast University (Natural Science Edition),2012,42(3):483.[doi:10.3969/j.issn.1001-0505.2012.03.017]
[2]肖海军,孙伟,蒋金洋,等.水泥基材料微结构的反复压汞法表征[J].东南大学学报(自然科学版),2013,43(2):371.[doi:10.3969/j.issn.1001-0505.2013.02.027]
 Xiao Haijun,Sun Wei,Jiang Jinyang,et al.Characterization of microstructure of cement-based materials by multi-cycle-MIP method[J].Journal of Southeast University (Natural Science Edition),2013,43(3):371.[doi:10.3969/j.issn.1001-0505.2013.02.027]
[3]周伟玲,孙伟,陈翠翠,等.应用纳米压痕技术表征水泥基材料微观力学性能[J].东南大学学报(自然科学版),2011,41(2):370.[doi:10.3969/j.issn.1001-0505.2011.02.030]
 Zhou Weiling,Sun Wei,Chen Cuicui,et al.Characterization for micro mechanical properties of cementitious materials by nanoindentation technique[J].Journal of Southeast University (Natural Science Edition),2011,41(3):370.[doi:10.3969/j.issn.1001-0505.2011.02.030]
[4]张亚梅,余保英.掺超细矿粉水泥基材料早龄期水化产物及孔结构特性[J].东南大学学报(自然科学版),2011,41(4):815.[doi:10.3969/j.issn.1001-0505.2011.04.030]
 Zhang Yamei,Yu Baoying.Characteristics of hydration products and pore structure in cement-based material with ultra fine slag at early ages[J].Journal of Southeast University (Natural Science Edition),2011,41(3):815.[doi:10.3969/j.issn.1001-0505.2011.04.030]
[5]王育江,刘加平,田倩,等.水泥基材料的塑性抗拉强度[J].东南大学学报(自然科学版),2014,44(2):369.[doi:10.3969/j.issn.1001-0505.2014.02.025]
 Wang Yujiang,Liu Jiaping,Tian Qian,et al.Tensile strength of cement based materials at plastic stage[J].Journal of Southeast University (Natural Science Edition),2014,44(3):369.[doi:10.3969/j.issn.1001-0505.2014.02.025]
[6]刘巧玲,孙伟,孙波,等.碳纳米管水性分散体的制备及其对水泥砂浆强度的影响[J].东南大学学报(自然科学版),2014,44(3):662.[doi:10.3969/j.issn.1001-0505.2014.03.037]
 Liu Qiaoling,Sun Wei,et al.Preparation of carbon nanotubes solution and its effects on mechanical properties of cement mortar[J].Journal of Southeast University (Natural Science Edition),2014,44(3):662.[doi:10.3969/j.issn.1001-0505.2014.03.037]
[7]常洪雷,穆松,刘建忠.防腐剂和养护制度对混凝土孔结构特征及水分损失的影响[J].东南大学学报(自然科学版),2015,45(6):1155.[doi:10.3969/j.issn.1001-0505.2015.06.024]
 Chang Honglei,Mu Song,Liu Jianzhong.Influence of anticorrosion agent and curing regimes on pore structure feature and moisture loss of concrete[J].Journal of Southeast University (Natural Science Edition),2015,45(3):1155.[doi:10.3969/j.issn.1001-0505.2015.06.024]
[8]施惠生,张林涛,吴凯,等.不同集料界面过渡区对氯离子传输特性的影响[J].东南大学学报(自然科学版),2018,48(6):1170.[doi:10.3969/j.issn.1001-0505.2018.06.027]
 Shi Huisheng,Zhang Lintao,Wu Kai,et al.Influence of interface transition zone of different aggregates on chloride transport properties[J].Journal of Southeast University (Natural Science Edition),2018,48(3):1170.[doi:10.3969/j.issn.1001-0505.2018.06.027]
[9]常洪雷,金祖权.无碳化影响时干湿交替下水泥基材料中氯离子传输行为[J].东南大学学报(自然科学版),2019,49(6):1153.[doi:10.3969/j.issn.1001-0505.2019.06.019]
 Chang Honglei,Jin Zuquan.Chloride transport behavior in cementitious-based materials under cyclic drying-wetting condition without influence of carbonation[J].Journal of Southeast University (Natural Science Edition),2019,49(3):1153.[doi:10.3969/j.issn.1001-0505.2019.06.019]
[10]沈奇真,潘钢华,占华刚,等.加速碳化条件下界面过渡区的纳米力学性能[J].东南大学学报(自然科学版),2016,46(1):146.[doi:10.3969/j.issn.1001-0505.2016.01.024]
 Shen Qizhen,Pan Ganghua,Zhan Huagang,et al.Nanomechanical properties of interfacial transition zone under accelerated carbonation[J].Journal of Southeast University (Natural Science Edition),2016,46(3):146.[doi:10.3969/j.issn.1001-0505.2016.01.024]

备注/Memo

备注/Memo:
收稿日期: 2014-10-15.
作者简介: 占华刚(1988—),男,硕士生;潘钢华(联系人),男,博士,教授,博士生导师, 101004929@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(51178103).
引用本文: 占华刚,潘钢华,王宇东.加速碳化条件下混凝土界面过渡区微结构[J].东南大学学报:自然科学版,2015,45(3):569-574. [doi:10.3969/j.issn.1001-0505.2015.03.027]
更新日期/Last Update: 2015-05-20