[1]郑旭,刘松玉,蔡光华,等.活性MgO碳化固化土的冻融循环特性试验研究[J].东南大学学报(自然科学版),2015,45(3):595-600.[doi:10.3969/j.issn.1001-0505.2015.03.032]
 Zheng Xu,Liu Songyu,Cai Guanghua,et al.Experimental study on freeze-thaw properties of carbonated reactive MgO-stabilized soils[J].Journal of Southeast University (Natural Science Edition),2015,45(3):595-600.[doi:10.3969/j.issn.1001-0505.2015.03.032]
点击复制

活性MgO碳化固化土的冻融循环特性试验研究()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
45
期数:
2015年第3期
页码:
595-600
栏目:
土木工程
出版日期:
2015-05-20

文章信息/Info

Title:
Experimental study on freeze-thaw properties of carbonated reactive MgO-stabilized soils
作者:
郑旭刘松玉蔡光华曹菁菁
东南大学岩土工程研究所, 南京 210096; 东南大学江苏省城市地下工程与环境安全重点实验室, 南京 210096
Author(s):
Zheng Xu Liu Songyu Cai Guanghua Cao Jingjing
Institute of Geotechnical Engineering, Southeast University, Nanjing 210096, China
Jiangsu Key Laboratory of Urban Underground Engineering and Environmental Safety, Southeast University, Nanjing 210096, China
关键词:
土体固化 碳化 粉土 粉质黏土 冻融循环 水泥土
Keywords:
soil stabilization carbonation silt silty clay freeze-thaw cycles cemented soil
分类号:
TU472
DOI:
10.3969/j.issn.1001-0505.2015.03.032
摘要:
采用室内三轴碳化装置研究了活性MgO碳化固化土的冻融耐久性能,对冻融循环作用下碳化固化土的无侧限抗压强度等进行了测试分析,并与水泥固化土进行了试验比较.结果表明:活性MgO固化粉土碳化3 h试样的无侧限抗压强度可达5 MPa左右,粉质黏土碳化24 h试样可达4.5 MPa左右;冻融循环作用下,碳化试样和水泥土试样的密度和干密度基本不变;碳化试样与水泥土试样在冻融循环中的无侧限抗压强度和E50表现出类似的变化趋势,即先略有降低,后又逐渐提高.碳化固化土经6次冻融循环后,其强度由5 MPa左右降低到4.5 MPa左右,而水泥土试样经4次冻融循环后其强度由1.6 MPa降低到1.4 MPa左右,二者均具有较好的抗冻融性能.微观测试分析表明, 活性MgO碳化固化土生成的镁碳酸化合物经冻融循环后没有发生明显变化,但试样内部0.1~1.0 μm的孔隙减少,1~30 μm的孔隙增加,累计孔隙体积略有增加,这也是导致强度略有降低的原因.
Abstract:
Laboratory unconfined compressive strength(UCS)tests were performed to investigate the freeze-thaw durability of carbonated reactive magnesia(MgO)-stabilized soils carbonated by triaxial carbonation device. The test results were then compared with those of cemented soils. It is found that the maximum UCS of MgO-stabilized silts can reach 5 MPa after carbonated 3 h, and those of MgO-stabilized silty clay can reach 4.5 MPa after 24 h carbonation. The density and dry density almost remain constant during the cyclic freeze-thaw tests. The UCS and E50 of carbonated reactive MgO-stabilized soils and cemented soils exhibit similar trends that slightly decrease first, then gradually increase. The UCS of carbonated reactive MgO-stabilizes soils reduced from about 5 MPa to about 4.5 MPa after 6 freeze-thaw cycles, and that of cemented soil reduces from about 1.6 MPa to about 1.4 MPa after 4 freeze-thaw cycles, they both have good resistance behaviors to freeze-thaw cycles. Based on microscopic mechanism analysis on mineral composition and pore structure, it shows that hydrated magnesium carbonates generated by carbonation will not change significantly after cyclic freeze-thaw tests. However, pores of 0.1 to 1.0 μm reduce, pores of 1 to 30 μm increase, leading to the cumulative increase in porosity. That is why the UCS slightly reduces.

参考文献/References:

[1] 刘松玉,钱国超,章定文.粉喷桩复合地基理论与工程应用[M].北京:中国建筑工业出版社,2006:18-21.
[2] 王定才.粉磨-搅拌一体化:中国商品混凝土产业的发展策略[J].混凝土,2003(2):20-23.
  Wang Dingcai. The powder whet-mix blends enter whole: the development strategy of the property of Chinese merchandise concrete[J]. Concrete, 2003(2): 20-23.(in Chinese)
[3] 寇新,李金峰.煤炭是我国能源节约的重点[J].煤炭经济研究,2004(8):12-13.
  Kou Xin,Li Jinfeng. Coal is the focus of China’s energy conservation[J]. Coal Economic Research, 2004(8): 12-13.(in Chinese)
[4] 李涛平.中国水泥工业能效现状和节能潜力报告[J].水泥工程,2004(4):1-10.
  Li Taoping. A report of China cement industry state of energy efficiency and potential of saving energy[J]. Cement Engineering, 2004(4): 1-10.(in Chinese)
[5] 胡秀莲,姜克隽.中国温室气体减排技术选择及对策评价[M].北京:中国环境科学出版社,2002:79-91.
[6] 易耀林.基于可持续发展的搅拌桩新技术与理论[D].南京:东南大学交通学院,2013.
[7] Liska M, Vandeperre L J, Al-Tabbaa A. Influence of carbonation on the properties of reactive magnesia cement-based pressed masonry units[J]. Advances in Cement Research, 2008, 20(2): 53-64.
[8] 李晨.氧化镁活性对碳化搅拌桩加固效果影响研究[D].南京:东南大学交通学院,2014.
[9] American Society for Testing and Materials(ASTM). Standard test methods for freezing and thawing compacted soil-cement mixtures [S]. West Conshohocken, US: ASTM International, 2003.

相似文献/References:

[1]涂永明,吕志涛.应力状态下混凝土的碳化试验研究[J].东南大学学报(自然科学版),2003,33(5):573.[doi:10.3969/j.issn.1001-0505.2003.05.008]
 Tu Yongming,Lü Zhitao.Experiment and research of presteressed concrete structure in carbonation corrosive environments[J].Journal of Southeast University (Natural Science Edition),2003,33(3):573.[doi:10.3969/j.issn.1001-0505.2003.05.008]
[2]庞超明,高美蓉,徐剑,等.试验方法及碳化对混凝土氯离子扩散系数的影响[J].东南大学学报(自然科学版),2011,41(6):1313.[doi:10.3969/j.issn.1001-0505.2011.06.034]
 Pang Chaoming,Gao Meirong,Xu Jian,et al.Influence of test methods and carbonation on chloride ion diffusion coefficient of concrete[J].Journal of Southeast University (Natural Science Edition),2011,41(3):1313.[doi:10.3969/j.issn.1001-0505.2011.06.034]
[3]张云升,孙伟,陈树东,等.粉煤灰混凝土2D和3D碳化试验[J].东南大学学报(自然科学版),2006,36(4):562.[doi:10.3969/j.issn.1001-0505.2006.04.014]
 Zhang Yunsheng,Sun Wei,Chen Shudong,et al.2D and 3D carbonation of fly ash concrete[J].Journal of Southeast University (Natural Science Edition),2006,36(3):562.[doi:10.3969/j.issn.1001-0505.2006.04.014]
[4]张云升,孙伟,陈树东,等.弯拉应力作用下粉煤灰混凝土的1D和2D碳化[J].东南大学学报(自然科学版),2007,37(1):118.[doi:10.3969/j.issn.1001-0505.2007.01.025]
 Zhang Yunsheng,Sun Wei,Chen Shudong,et al.1D and 2D carbonation of fly ash concrete under flexural stress[J].Journal of Southeast University (Natural Science Edition),2007,37(3):118.[doi:10.3969/j.issn.1001-0505.2007.01.025]
[5]占华刚,潘钢华,王宇东.加速碳化条件下混凝土界面过渡区微结构[J].东南大学学报(自然科学版),2015,45(3):569.[doi:10.3969/j.issn.1001-0505.2015.03.027]
 Zhan Huagang,Pan Ganghua,Wang Yudong.Microstructure of interface transition zone in concrete under accelerated carbonation[J].Journal of Southeast University (Natural Science Edition),2015,45(3):569.[doi:10.3969/j.issn.1001-0505.2015.03.027]
[6]蔡光华,刘松玉,杜延军,等.不同活性氧化镁碳化粉土对比试验[J].东南大学学报(自然科学版),2015,45(5):958.[doi:10.3969/j.issn.1001-0505.2015.05.024]
 Cai Guanghua,Liu Songyu,Du Yanjun,et al.Comparative experiments on carbonated silts treated by magnesia with different activity[J].Journal of Southeast University (Natural Science Edition),2015,45(3):958.[doi:10.3969/j.issn.1001-0505.2015.05.024]
[7]沈奇真,潘钢华,占华刚,等.加速碳化条件下界面过渡区的纳米力学性能[J].东南大学学报(自然科学版),2016,46(1):146.[doi:10.3969/j.issn.1001-0505.2016.01.024]
 Shen Qizhen,Pan Ganghua,Zhan Huagang,et al.Nanomechanical properties of interfacial transition zone under accelerated carbonation[J].Journal of Southeast University (Natural Science Edition),2016,46(3):146.[doi:10.3969/j.issn.1001-0505.2016.01.024]
[8]谭永山,余红发,刘倩倩.高性能玻镁外挂墙板的耐久性及其微观机理[J].东南大学学报(自然科学版),2017,47(6):1201.[doi:10.3969/j.issn.1001-0505.2017.06.019]
 Tan Yongshan,Yu Hongfa,Liu Qianqian.Durability and microscopic mechanism of high performance glass fiber reinforce magnesium oxychloride cement exterior cladding walls[J].Journal of Southeast University (Natural Science Edition),2017,47(3):1201.[doi:10.3969/j.issn.1001-0505.2017.06.019]

备注/Memo

备注/Memo:
收稿日期: 2014-12-22.
作者简介: 郑旭(1989—),男,硕士生;刘松玉(联系人),男,博士,教授、博士生导师,liusy@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(51279032)、“十二五”国家科技支撑计划资助项目(2012BAJ01B02)、中央高校基本科研业务费专项资金资助项目、江苏省普通高校研究生科研创新计划资助项目(KYLX_0147).
引用本文: 郑旭,刘松玉,蔡光华,等.活性MgO碳化固化土的冻融循环特性试验研究[J].东南大学学报:自然科学版,2015,45(3):595-600. [doi:10.3969/j.issn.1001-0505.2015.03.032]
更新日期/Last Update: 2015-05-20