[1]吴尘,徐新洲,王浩,等.基于模拟退火算法的稀疏系数抽取滤波器设计[J].东南大学学报(自然科学版),2015,45(4):631-634.[doi:10.3969/j.issn.1001-0505.2015.04.003] 　Wu Chen,Xu Xinzhou,Wang Hao,et al.Design of sparse coefficient decimation filter using simulated annealing algorithm[J].Journal of Southeast University (Natural Science Edition),2015,45(4):631-634.[doi:10.3969/j.issn.1001-0505.2015.04.003] 点击复制 基于模拟退火算法的稀疏系数抽取滤波器设计() 分享到： var jiathis_config = { data_track_clickback: true };

45

2015年第4期

631-634

2015-07-20

文章信息/Info

Title:
Design of sparse coefficient decimation filter using simulated annealing algorithm

1东南大学水声信号处理教育部重点实验室, 南京210096; 2杭州电子科技大学通信工程学院, 杭州310018
Author(s):
1Key Laboratory of Underwater Acoustic Signal Processing of Ministry of Education, Southeast University, Nanjing 210096, China
2School of Communication Engineering, Hangzhou Dianzi University, Hangzhou 310018, China

Keywords:

TN911.72
DOI:
10.3969/j.issn.1001-0505.2015.04.003

Abstract:
In order to reduce the number of multipliers of the coefficient decimation filter, a design method based on the simulated annealing(SA)algorithm is proposed. The proposed method transforms the non-convex sparse design of coefficient decimation filter into a combinatorial optimization problem which finds the sparsest set of the positions of the zero coefficients, and then uses the simulated annealing algorithm to solve it. Combining the greedy theory, the method successively increases the sparsity of the coefficient decimation filter until no sparser design result exists. At each step of the method, the sparsity of the coefficient decimation filter is fixed, and SA is used for finding the set of the positions of the zero coefficients that satisfies the design specifications. Simulation results demonstrate that the proposed method can effectively reduce the number of multipliers of the coefficient decimation filter.

参考文献/References:

[1] Mahesh R, Vinod A P. Coefficient decimation approach for realizing reconfigurable finite impulse response filters [C]//IEEE International Symposium on Circuits and Systems. Seattle, USA, 2008: 81-84.
[2] Mahesh R, Vinod A P. Low complexity flexible filter banks for uniform and non-uniform channelisation in software radios using coefficient decimation [J]. IET Circuits, Devices & Systems, 2011, 5(3): 232-242.
[3] Lin M, Vinod A P, See C M S. A new flexible filter bank for low complexity spectrum sensing in cognitive radios [J]. Journal of Signal Processing Systems, 2011, 62(2): 205-215.
[4] Smitha K G, Vinod A P. A new low power reconfigurable decimation-interpolation and masking based filter architecture for channel adaptation in cognitive radio handsets [J]. Physical Communication, 2009, 2(1/2): 47-57.
[5] Parks T, McClellan J. Chebyshev approximation for nonrecursive digital filters with linear phase [J]. IEEE Transactions on Circuit Theory, 1972, 19(2): 189-194.
[6] Sheikh Z U, Gustafsson O. Linear programming design of coefficient decimation FIR filters [J]. IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 2012, 59(1): 60-64.
[7] Donoho D L. Compressed sensing [J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
[8] Baran T, Wei D, Oppenheim A V. Linear programming algorithms for sparse filter design [J]. IEEE Transactions on Signal Processing, 2010, 58(3): 1605-1617.
[9] Wu C, Zhang Y, Shi Y, et al. Sparse FIR filter design using binary particle swarm optimization[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2014, 97(12): 2653-2657.
[10] Kirkpatrick S, Gelatt C D, Vecchi M P. Optimization by simulated annealing [J]. Science, 1983, 220(4598): 671-680.
[11] Du X P, Cheng L Z, Chen D Q. A simulated annealing algorithm for sparse recovery by l0 minimization [J]. Neurocomputing, 2014, 131: 98-104.
[12] Xu F M, Wang S H. A hybrid simulated annealing thresholding algorithm for compressed sensing [J]. Signal Processing, 2013, 93(6): 1577-1585.