[1]马强,陈振乾.分形多孔材料双尺度孔隙内气体脱附扩散过程数值模拟[J].东南大学学报(自然科学版),2015,45(4):728-733.[doi:10.3969/j.issn.1001-0505.2015.04.020]
 Ma Qiang,Chen Zhenqian.Numerical simulation of desorption and diffusion of gas in fractal porous materials with two-scale pores[J].Journal of Southeast University (Natural Science Edition),2015,45(4):728-733.[doi:10.3969/j.issn.1001-0505.2015.04.020]
点击复制

分形多孔材料双尺度孔隙内气体脱附扩散过程数值模拟()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
45
期数:
2015年第4期
页码:
728-733
栏目:
能源与动力工程
出版日期:
2015-07-20

文章信息/Info

Title:
Numerical simulation of desorption and diffusion of gas in fractal porous materials with two-scale pores
作者:
马强陈振乾
东南大学能源与环境学院, 南京 210096
Author(s):
Ma Qiang Chen Zhenqian
School of Energy and Environment, Southeast University, Nanjing 210096, China
关键词:
多孔材料 分形 脱附 扩散 格子Boltzmann
Keywords:
porous materials fractal desorption diffusion lattice Boltzmann
分类号:
TK124
DOI:
10.3969/j.issn.1001-0505.2015.04.020
摘要:
为了研究多孔材料内气体脱附、扩散规律,结合实际多孔材料的结构特征,利用分形布朗运动模型(FBM)构造出由宏观孔隙和固相基质组成的三维各向同性和各向异性的分形多孔材料.基于格子Boltzmann方法(LBM)在2个空间尺度上建立气体在宏观孔隙中扩散和在固相基质内微观孔隙中脱附、迁移的数值模型.通过数值模拟,研究了多孔材料的吸附量和结构特性对其脱附、扩散过程的影响. 结果表明:微观孔隙内较小的吸附量会造成脱附过程中气体向宏观孔隙内迁移速度降低,从而造成宏观孔隙内气体浓度减少;对于不同分形特性的多孔材料,较高的Hurst指数会提高宏观孔隙的等效扩散系数并降低多孔材料的比表面积,从而降低宏观孔隙内的瞬态气体浓度.
Abstract:
The desorption and diffusion of gas in porous materials are investigated. Based on the structure characteristics of real porous materials, three-dimensional isotropic and anisotropic fractal porous materials which are composed of the macroscopic pores and solid matrix are reconstructed by the fractional Brownian motion model(FBM). A two-scale numerical model coupling with gas diffusion in the macroscopic pores and desorption/diffusion in the microscopic pores of solid matrix are established using the lattice Boltzmann method. The effects of adsorbing capacity in the microscopic pores and structure characteristics of porous materials on gas desorption/diffusion are examined. Results show that the migration rate of gas to macroscopic pores is reduced by the lower adsorbing capacity of microscopic pores, which leads to the decrease in the transient concentrations in macroscopic pores. In addition, for porous materials with different structure characteristics, with the increase in the Hurst exponent, effective diffusion coefficients increase and specific surface area decreases, which leads to the decrease in the transient concentrations in macroscopic pores.

参考文献/References:

[1] Zhao Y, Shen Y M, Ma G Y, et al. Adsorption separation of carbon dioxide from flue gas by a molecularly imprinted adsorbent [J]. Environmental Science & Technology, 2014, 48(3): 1601-1608.
[2] Jarraya I, Fourmentin S, Benzina M, et al. VOC adsorption on raw and modified clay materials [J]. Chemical Geology, 2010, 275(1/2): 1-8.
[3] Manjhi N, Verma N, Salem K, et al. Simulation of 3D velocity and concentration profiles in a packed bed absorber by lattice Boltzmann methods [J]. Chemical Engineering Science, 2006, 61(23): 7754-7765.
[4] Xiong J Y, Liu C, Zhang Y P. A general analytical model for formaldehyde and VOC emission/sorption in single-layer building materials and its application in determining the characteristic parameters [J]. Atmospheric Environment, 2012, 47: 288-294.
[5] Bakhmutov V I. Strategies for solid-state NMR studies of materials: from diamagnetic to paramagnetic porous solids [J]. Chemical Reviews, 2011, 111(2): 530-562.
[6] Rama P, Liu Y, Chen R, et al. Determination of the anisotropic permeability of a carbon cloth gas diffusion layer through X-ray computer micro-tomography and single-phase lattice Boltzmann simulation [J]. International Journal for Numerical Methods in Fluids, 2011, 67(4): 518-530.
[7] Wargo E A, Kotaka T, Tabuchi Y, et al. Comparison of focused ion beam versus nano-scale X-ray computed tomography for resolving 3-D microstructures of porous fuel cell materials [J]. Journal of Power Sources, 2013, 241: 608-618.
[8] Yeong C L Y, Torquato S. Reconstructing random media. Ⅱ. Three-dimensional media from two-dimensional cuts [J]. Physical Review E, 1998, 58(1): 224-233.
[9] Zhao X C, Yao J, Yi Y J. A new stochastic method of reconstructing porous media [J]. Transport in Porous Media, 2007, 69(1): 1-11.
[10] Tahmasebi P, Sahimi M. Reconstruction of three-dimensional porous media using a single thin section [J]. Physical Review E, 2012, 85(6): 1149-1164.
[11] Yeong C L Y, Torquato S. Reconstructing random media [J]. Physical Review E, 1998, 57(1): 495-506.
[12] Yu B M, Li J H. Some fractal characters of porous media [J]. Fractals, 2001, 9(3): 365-372.
[13] 马强,陈俊,陈振乾.分形多孔介质传热传质过程的lattice-Boltzmann模拟[J].化工学报,2014,65(S1):180-187.
  Ma Qiang, Chen Jun, Chen Zhenqian. Lattice Boltzmann simulation for heat and mass transfer in fractal porous media [J]. CIESC Journal, 2014, 65(S1): 180-187.(in Chinese)
[14] Wang M R, Pan N. Modeling and prediction of the effective thermal conductivity of random open-cell porous foams [J]. International Journal of Heat and Mass Transfer, 2008, 51(5/6): 1325-1331.
[15] Jeong N, Choi D H, Lin C L. Estimation of thermal and mass diffusivity in a porous medium of complex structure using a lattice Boltzmann method [J]. International Journal of Heat and Mass Transfer, 2008, 51(15/16): 3913-3923.
[16] Zhao C Y, Dai L N, Tang G H, et al. Numerical study of natural convection in porous media(metals)using lattice Boltzmann method(LBM)[J]. International Journal of Heat and Fluid Flow, 2010, 31(5): 925-934.
[17] Ma Q, Chen Z Q, Shi J, et al. Lattice Boltzmann modeling of VOC desorption and diffusion in porous materials [J]. Building and Environment, 2014, 72: 145-153.
[18] Xiong J Y, Zhang Y P, Wang X K, et al. Macro-meso two-scale model for predicting the VOC diffusion coefficients and emission characteristics of porous building materials [J]. Atmospheric Environment, 2008, 42(21): 5278-5290.
[19] Verma N, Salem K, Mewes D. Simulation of micro-and macro-transport in a packed bed of porous adsorbents by lattice Boltzmann methods [J]. Chemical Engineering Science, 2007, 62(14): 3685-3698.
[20] Wang M R, Wang J K, Pan N. Mesoscopic predictions of the effective thermal conductivity for microscale random porous media [J]. Physical Review E, 2007, 75(3): 036702.
[21] Luo L S, Girimaji S S. Theory of the lattice Boltzmann method: two-fluid model for binary mixtures [J]. Physical Review E, 2003, 67(3): 036302.
[22] Kikkinides E S, Burganos V N. Structural and flow properties of binary media generated by fractional Brownian motion models [J]. Physical Review E, 1999, 59(6): 7185-7194.
[23] Kikkinides E S, Burganos V N. Permeation properties of three-dimensional self-affine reconstructions of porous materials [J]. Physical Review E, 2000, 62(5): 6906-6915.
[24] Jilesen J, Kuo J, Lien F S. Three-dimensional midpoint displacement algorithm for the generation of fractal porous media [J]. Computers & Geosciences, 2012, 46: 164-173.
[25] Jia L F, Li X T. Fabric pattern modeling by fractional Lévy stable motion [C]//IEEE International Symposium on Systems and Control in Aerospace and Astronautics. Shenzhen, China, 2008: 1-5.
[26] Pesquet-Popescu B, Véhel J L. Stochastic fractal models for image processing [J]. IEEE Signal Processing Magazine, 2002, 19(5): 48-62.
[27] Maxwell J C. A treatise on electricity and magnetism [M]. New York: Dover Publications, 1954: 5-27.
[28] Wakao N, Smith J M. Diffusion in catalyst pellets [J]. Chemical Engineering Science, 1962, 17(11): 825-834.
[29] Currie J A. Gaseous diffusion in porous media. Part 2.—Dry granular materials [J]. British Journal of Applied Physics, 1960, 11(8): 318-324.
[30] Degan G, Vasseur P. Influence of anisotropy on convection in porous media with nonuniform thermal gradient [J]. International Journal of Heat and Mass Transfer, 2003, 46(5): 781-789.

相似文献/References:

[1]杨荣清,吴新,赵长遂.石油焦燃烧过程中孔隙结构变化实验研究[J].东南大学学报(自然科学版),2006,36(1):134.[doi:10.3969/j.issn.1001-0505.2006.01.027]
 Yang Rongqing,Wu Xin,Zhao Changsui.Experimental study on changes in pore structure of petroleum coke during combustion[J].Journal of Southeast University (Natural Science Edition),2006,36(4):134.[doi:10.3969/j.issn.1001-0505.2006.01.027]
[2]姚刚,沈湘林.基于分形的超细颗粒声波团聚数值模拟[J].东南大学学报(自然科学版),2005,35(1):145.[doi:10.3969/j.issn.1001-0505.2005.01.031]
 Yao Gang,Shen Xianglin.Numerical simulation of ultrafine particle acoustic agglomeration based on fractal model[J].Journal of Southeast University (Natural Science Edition),2005,35(4):145.[doi:10.3969/j.issn.1001-0505.2005.01.031]
[3]缪林昌,邱钰,刘松玉.煤矸石散粒料的分形特征研究[J].东南大学学报(自然科学版),2003,33(1):79.[doi:10.3969/j.issn.1001-0505.2003.01.020]
 Miao Linchang,Qiu Yu,Liu Songyu.Fractal feature of coal mine waste discrete material[J].Journal of Southeast University (Natural Science Edition),2003,33(4):79.[doi:10.3969/j.issn.1001-0505.2003.01.020]
[4]郝英立,Jose IragorryY,ong X. Tao.壁面结霜初始状态实验研究[J].东南大学学报(自然科学版),2005,35(1):149.[doi:10.3969/j.issn.1001-0505.2005.01.032]
 Hao Yingli,Jose Iragorry,Yong X. Tao.Experimental study of initial state of frost formation on flat surface[J].Journal of Southeast University (Natural Science Edition),2005,35(4):149.[doi:10.3969/j.issn.1001-0505.2005.01.032]
[5]张朝晖,黄惟一.振动波形的分形判别及特征提取[J].东南大学学报(自然科学版),1999,29(4):26.[doi:10.3969/j.issn.1001-0505.1999.04.006]
 Zhang Zhaohui,Huang Weiyi.Fractal Determination and Feature Extraction from Vibration Waveforms[J].Journal of Southeast University (Natural Science Edition),1999,29(4):26.[doi:10.3969/j.issn.1001-0505.1999.04.006]
[6]牟新竹,陈振乾.多尺度分形多孔介质气体有效扩散系数的数学模型[J].东南大学学报(自然科学版),2019,49(3):520.[doi:10.3969/j.issn.1001-0505.2019.03.017]
 Mou Xinzhu,Chen Zhenqian.Mathematical model for effective gas diffusion coefficient in multi-scale fractal porous media[J].Journal of Southeast University (Natural Science Edition),2019,49(4):520.[doi:10.3969/j.issn.1001-0505.2019.03.017]

备注/Memo

备注/Memo:
收稿日期: 2015-02-02.
作者简介: 马强(1986—),男,博士生;陈振乾(联系人),男,博士,教授,博士生导师,zqchen@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(51276041)、东南大学优秀博士学位论文培育基金资助项目(YBJJ1431).
引用本文: 马强,陈振乾.分形多孔材料双尺度孔隙内气体脱附扩散过程数值模拟[J].东南大学学报:自然科学版,2015,45(4):728-733. [doi:10.3969/j.issn.1001-0505.2015.04.020]
更新日期/Last Update: 2015-07-20