[1]崔溦,吴甲一,宋慧芳.考虑水化度对热学参数影响的早期混凝土温度场分析[J].东南大学学报(自然科学版),2015,45(4):792-798.[doi:10.3969/j.issn.1001-0505.2015.04.031]
 Cui Wei,Wu Jiayi,Song Huifang.Thermal field analysis of early-age concrete considering effects of degree of hydration on thermal conductivity[J].Journal of Southeast University (Natural Science Edition),2015,45(4):792-798.[doi:10.3969/j.issn.1001-0505.2015.04.031]
点击复制

考虑水化度对热学参数影响的早期混凝土温度场分析()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
45
期数:
2015年第4期
页码:
792-798
栏目:
材料科学与工程
出版日期:
2015-07-20

文章信息/Info

Title:
Thermal field analysis of early-age concrete considering effects of degree of hydration on thermal conductivity
作者:
崔溦吴甲一宋慧芳
天津大学水利工程仿真与安全国家重点实验室, 天津300072
Author(s):
Cui Wei Wu Jiayi Song Huifang
State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300072, China
关键词:
早期混凝土 热学参数 水化度 二次开发 温度场
Keywords:
early-age concrete thermal parameters degree of hydration secondary development thermal field
分类号:
TU528
DOI:
10.3969/j.issn.1001-0505.2015.04.031
摘要:
为了更加准确地模拟早期混凝土的温度场,通过试验研究了早期混凝土温度的变化规律,同时基于ABAQUS二次开发平台,考虑早期混凝土热学参数(导热系数和比热容)随水化度的变化规律,开发了温度场子程序UMATHT和用于模拟温度场第3类边界条件的FILM子程序.在此基础上,采用不同的温度场计算模型对试验进行数值模拟,通过实验结果与数值模拟结果的对比得出:考虑比热容及导热系数随水化度的变化过程,数值模拟结果与实测值基本一致,最大误差控制在1.5%以内,达到温度峰值的时间误差控制在0.5 h以内;当不考虑这2个参数随水化过程的变化,数值模拟与实测值存在较大误差,峰值温度误差均在4.6 ℃以上,达到峰值温度的时间均延长5 h以上.因此在对早期混凝土的温度场分析时有必要考虑导热系数和比热容随水化度的变化.
Abstract:
In order to more accurately simulate the temperature field of early-age concrete, the temperature changing rules of early-age concrete are studied through the laboratory experiment. Based on the ABAQUS secondary development platform, considering early-age concrete thermal parameters(thermal conductivity and specific heat)changing along with the degree of hydration, the thermal field subroutine UMATHT and user subroutine FILM which is used to simulate the third boundary condition of thermal field are developed. On this basis, different temperature field computational models are used to simulate the test. By comparing the experimental results with the numerical simulation results, it is found that, considering the specific heat and thermal conductivity varying with the degree of hydration process, the numerical simulation results and the measured values are basically consistent, the maximum error of the peak temperature is controlled within 1.5% and the time error to reach peak temperature is controlled within 0.5 h. Without considering the two parameters varying with the hydration process, there is a big difference between numerical simulation and the measured values, peak temperature error is up to more than 4.6 ℃, and the time delay reaching the peak temperature is more than 5 h. Therefore, it is necessary to consider the thermal conductivity and specific heat varying with the degree of hydration when the temperature field of early-age concrete is analyzed.

参考文献/References:

[1] 朱伯芳. 大体积混凝土的温度应力与温度控制[M].北京:中国水利水电出版社,1999:154-155.
[2] Demirbo?a R, Gül R. The effects of expanded perlite aggregate, silica fume and fly ash on the thermal conductivity of lightweight concrete [J]. Cement and Concrete Research, 2003, 33(5): 723-727.
[3] Uysal H, Demirbo?a R, 瘙塁ahin R, et al. The effects of different cement dosages, slumps, and pumice aggregate ratios on the thermal conductivity and density of concrete[J]. Cement and Concrete Research, 2004, 34(5): 845-848.
[4] 苏敏.工程混凝土早期温度应力分析及二次开发的研究[D].哈尔滨:哈尔滨工业大学深圳研究生院,2010.
[5] Saul A G A. Principles underlying the steam curing of concrete at atmospheric pressure[J]. Magazine of Concrete Research, 1951, 2(6):127-140.
[6] Azenha M, Faria R, Ferreira D. Identification of early-age concrete temperatures and strains: monitoring and numerical simulation[J]. Cement and Concrete Composites, 2009, 31(6):369-378.
[7] Lee Y, Kim J K. Numerical analysis of the early age behavior of concrete structures with a hydration based microplane model[J]. Computers and Structures, 2009,87(17):1085-1101.
[8] 李骁春,吴胜兴.基于水化度概念的早期混凝土热分析[J].科学技术与工程,2008,8(2):441-445.
  Li Xiaochun, Wu Shengxing. Early-age concrete temperature analysis based on degree of hydration[J]. Science Technology and Engineering, 2008, 8(2):441-445.(in Chinese)
[9] 陈长华.考虑钢筋作用的水工结构施工期温度场与温度应力分析[D].南京:河海大学土木工程学院,2006.
[10] Kim K H, Jeon S E, Kim J K, et al. An experimental study on thermal conductivity of concrete[J]. Cement and Concrete Research, 2003, 33(3):363-371.
[11] Jeong J-H, Kim N. A thermal conductivity model for hydrating concrete pavements[J]. Journal of the Korea Concrete Institute, 2004, 16(1):125-129.
[12] De Schutter G. Finite element simulation of thermal cracking in massive hardening concrete elements using degree of hydration based material laws[J]. Computers and Structures, 2002, 80(27):2035-2042.
[13] Schindler A K. Concrete hydration, temperature development, and setting at early-ages [D]. Austin, Texas, USA: University of Texas at Austin, 2002.
[14] Van Breugel K. Simulation of hydration and formation of structure in hardening cement based materials[D]. Delft, Netherlands: Delft University Press, 1997.
[15] 崔溦,陈王,王宁.早期混凝土热学参数优化及温度场精确模拟[J].四川大学学报: 工程科学版,2014, 26(3):161-167.
  Cui Wei, Chen Wang, Wang Ning. Early concrete thermal parameters optimization and accurate thermal field simulation [J]. Journal of Sichuan University: Engineering Science Edition, 2014, 26(3):161-167.(in Chinese)

备注/Memo

备注/Memo:
收稿日期: 2014-12-01.
作者简介: 崔溦(1977—),男,博士,副教授,cuiwei@tju.edu.cn.
基金项目: 国家自然科学基金创新研究群体资助项目(51321065)、国家自然科学基金资助项目(51279126).
引用本文: 崔溦,吴甲一,宋慧芳.考虑水化度对热学参数影响的早期混凝土温度场分析[J].东南大学学报:自然科学版,2015,45(4):792-798. [doi:10.3969/j.issn.1001-0505.2015.04.031]
更新日期/Last Update: 2015-07-20