[1]熊文,尤吉,房涛,等.风环境对大体积混凝土桥塔施工水化热的影响分析[J].东南大学学报(自然科学版),2015,45(5):941-946.[doi:10.3969/j.issn.1001-0505.2015.05.021]
 Xiong Wen,You Ji,Fang Tao,et al.Influence analysis of wind environments on hydration heat of massive concrete pylon construction[J].Journal of Southeast University (Natural Science Edition),2015,45(5):941-946.[doi:10.3969/j.issn.1001-0505.2015.05.021]
点击复制

风环境对大体积混凝土桥塔施工水化热的影响分析()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
45
期数:
2015年第5期
页码:
941-946
栏目:
交通运输工程
出版日期:
2015-09-20

文章信息/Info

Title:
Influence analysis of wind environments on hydration heat of massive concrete pylon construction
作者:
熊文1尤吉2房涛2叶见曙1易岳林2
1东南大学交通学院, 南京 210096; 2安徽省高速公路控股集团有限公司, 合肥230088
Author(s):
Xiong Wen1 You Ji2 Fang Tao2 Ye Jianshu1 Yi Yuelin2
1School of Transportation, Southeast University, Nanjing 210096, China
2Anhui Expressway Holding Group Co., Ltd., Hefei 230088, China
关键词:
桥塔施工 风环境 水化热 数值模型 参数分析
Keywords:
pylon construction wind environments hydration heat simulation model parametric analysis
分类号:
U442.59
DOI:
10.3969/j.issn.1001-0505.2015.05.021
摘要:
采用数值模拟结合现场监测的方法研究了复杂风环境对跨江、跨海大桥大体积混凝土桥塔施工水化热的影响.首先,提出了风环境下混凝土水化热的理论计算方法,并基于实际背景工程考虑风环境,对大体积混凝土桥塔施工过程中的水化热效应进行数值模拟;然后,利用现场实际监测数据,对模拟的准确性进行验证;最后,利用此数值模型,针对风特征及结构参数进行分析.分析结果表明:环境平均风速增大会使混凝土桥塔节段内的水化热温度极值降低,但其表面温度梯度增加,开裂可能性也相应增大;结构尺寸的增大会削弱风环境对混凝土水化热的影响,但由尺寸增大引起的刚度增加会导致水化热最大主拉应力明显增大,从而引起混凝土开裂;同一风环境下,桥塔截面形式的改变对浇筑过程中结构内部温度梯度、极值分布以及主应力大小影响明显.
Abstract:
The influence of complex wind environments on hydration heat of massive concrete pylon of bridges crossing over river or sea is investigated by using numerical simulation and on-site monitoring. First, the theoretical calculation method of hydration heat of concrete in wind environments is proposed. With the consideration of wind environments, the hydration heat effects in the construction of massive concrete pylon are simulated based on a practical project. Then, the accuracy of the proposed simulation is verified according to the monitoring data from the pre-installed sensors. Finally, the wind characters and structure parameters are parametrically analyzed by using the proposed simulation. The analysis results show that with the increase of the average wind speed, the limit values of the hydration heat-induced temperatures inside the concrete pylon segments decrease, but the temperature gradient of the structure surface and the cracking possibility increase. The influence of wind environments is weakened with the increase of the size of the pylon cross-section. However, the increased structure stiffness caused by the increase of the size can increase the maximum principal tensile stress induced by hydration heat, which results in the concrete cracking. The temperature gradient, the distribution of the limit values of the temperatures, and the principal tensile stress during the construction are highly influenced by the variation of the shape of the pylon cross-section in the same wind environments.

参考文献/References:

[1] 刘庆阳, 张立永. 大体积混凝土桥台水化热开裂分析与对策[J]. 重庆交通大学学报:自然科学版, 2013, 32(S1): 832-835.
  Liu Qingyang, Zhang Liyong. Analysis and countermeasures of mass concrete abutment hydration heat cracking [J]. Journal of Chongqing Jiaotong University:Natural Science, 2013, 32(S1):832-835.(in Chinese)
[2] 张岗, 任伟, 贺拴海, 等. 箱梁水化热温度场时效模式及时变应力场[J]. 长安大学学报:自然科学版, 2008, 28(4): 51-56.
  Zhang Gang, Ren Wei, He Shuanhai, et al. Time dependent effect on hydration heat temperature and stress field for concrete box girder [J]. Journal of Chang’an University:Natural Science Edition, 2008, 28(4):51-56.(in Chinese)
[3] 冯德飞, 卢文良. 混凝土箱梁水化热温度试验研究[J]. 铁道工程学报, 2006(8): 62-67.
  Feng Defei, Lu Wenliang. Experimental research on hydration temperature of concrete box girder [J]. Journal of Railway Engineering Society, 2006(8): 62-67.(in Chinese)
[4] Ishikawa M. Thermal stress analysis of a concrete dam [J]. Computers and Structures, 1991, 40(2): 347-352.
[5] 刘琳莉. 桥梁大体积混凝土水化热施工控制研究[D]. 成都:西南交通大学土木工程学院, 2012.
[6] 阮静, 叶见曙. 高强度混凝土水化热的研究[J]. 东南大学学报:自然科学版, 2001, 31(3): 53-56.
  Ruan Jing, Ye Jianshu. Study on heat of hydration on high strength concrete [J]. Journal of Southeast University:Natural Science Edition, 2001, 31(3): 53-56.(in Chinese)
[7] de Freitas J A T, Cuong P T, Faria R, et al. Modelling of cement hydration in concrete structures with hybrid finite elements [J]. Finite Elements in Analysis and Design, 2013, 77:16-30.
[8] Martinelli E, Koenders E A B, Caggiano A. A numerical recipe for modelling hydration and heat flow in hardening concrete [J]. Cement and Concrete Composites, 2013, 40: 48-58.
[9] Kim J K, Kim K H, Yang J K. Thermal analysis of hydration heat in concrete structures with pipe-cooling system [J]. Computers & Structures, 2001, 79(2): 163-171.
[10] Yang J, Hu Y, Zuo Z, et al. Thermal analysis of mass concrete embedded with double-layer staggered heterogeneous cooling water pipes [J]. Applied Thermal Engineering, 2012, 35: 145-156.
[11] 边真. 大体积混凝土温度应力时效分析与控制研究[D]. 西安:长安大学建筑工程学院, 2012.
[12] 邓宁华. 风速风向对墙体表面换热系数影响的实验研究[D]. 长沙:湖南大学土木工程学院, 2001.
[13] 刘照球. 混凝土结构表面对流换热研究[D]. 上海:同济大学土木工程学院, 2006.

备注/Memo

备注/Memo:
收稿日期: 2015-03-30.
作者简介: 熊文(1982—),男,博士,副教授,wxiong@seu.edu.cn.
基金项目: 交通运输部建设科技资助项目(2014318J14250)、安徽省交通科技资助项目(wdky-2013-01)、江苏省自然科学基金资助项目(BK2012343).
引用本文: 熊文,尤吉,房涛,等.风环境对大体积混凝土桥塔施工水化热的影响分析[J].东南大学学报:自然科学版,2015,45(5):941-946. [doi:10.3969/j.issn.1001-0505.2015.05.021]
更新日期/Last Update: 2015-09-20