[1]郭孜政,潘毅润,潘雨帆,等.基于EEG熵值的驾驶员脑力负荷水平识别方法[J].东南大学学报(自然科学版),2015,45(5):980-984.[doi:10.3969/j.issn.1001-0505.2015.05.028]
 Guo Zizheng,Pan Yirun,Pan Yufan,et al.Recognition method of driving mental workload based on EEG entropy[J].Journal of Southeast University (Natural Science Edition),2015,45(5):980-984.[doi:10.3969/j.issn.1001-0505.2015.05.028]
点击复制

基于EEG熵值的驾驶员脑力负荷水平识别方法()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
45
期数:
2015年第5期
页码:
980-984
栏目:
安全科学
出版日期:
2015-09-20

文章信息/Info

Title:
Recognition method of driving mental workload based on EEG entropy
作者:
郭孜政潘毅润潘雨帆吴志敏肖琼谭永刚张骏
西南交通大学交通运输与物流学院, 成都610031; 西南交通大学综合交通运输智能化国家地方联合工程实验室, 成都610031
Author(s):
Guo Zizheng Pan Yirun Pan Yufan Wu Zhimin Xiao Qiong Tan Yonggang Zhang Jun
School of Transportation and Logistics, Southwest Jiaotong University, Chengdu 610031, China
National United Engineering Laboratory of Integrated and Intelligent Transportation, Southwest Jiaotong University, Chengdu 610031, China
关键词:
驾驶脑力负荷 EEG BP神经网络
Keywords:
driving mental workload entropy electroencephalograph(EEG) back propagation(BP)neural network
分类号:
X951
DOI:
10.3969/j.issn.1001-0505.2015.05.028
摘要:
为了对驾驶员脑力负荷予以有效识别,基于脑电信号指标构建了一种驾驶员脑力负荷识别方法.对驾驶员脑电信号进行快速傅里叶变换(FFT),选取θ(4~8 Hz), α(8~13 Hz), β(13~30 Hz)3个频段的频谱幅值分别进行熵处理,对所得到的熵值作为脑力负荷识别参数,并对识别参数进行Kruskal-Wallis检验,选取差异最为显著的10项参数作为脑力负荷特征指标,在此基础上结合BP模型构建了驾驶员脑力负荷识别模型.基于驾驶模拟器实验数据,模型识别正确率为87.8%~90.4%.结果表明,该模型对驾驶员脑力负荷识别具有较高准确性,可实现不同驾驶员脑力负荷的有效识别,为未来自动辅助驾驶系统构建及车载信息系统优化设计提供算法依据.
Abstract:
In order to recognize driving mental workload efficiently, a recognition method of driving mental workload based on EEG indices is constructed. After the fast Fourier transform(FFT)of the electroencephalograph(EEG), the entropy processing of three bands of spectrum, θ(4 to 8 Hz), α(8 to 13 Hz), β(13 to 30 Hz), are conducted respectively, and the value of entropy is used as mental workload recognition parameter. Then 10 difference-remarkable indices are chosen as the characteristic features after the Kruskal-Wallis test of the recognition parameters. Meanwhile, combining with the back propagation(BP)neural network, the recognition model for state of driving mental workload is established. The EEG data based on the simulator are used to test the model and the recognition accuracy rate is within 87.8% to 90.4%. The results show that the proposed model is accurate for the recognition of driving mental workload and achieves the recognition of different drivers. The model provides a algorithm basis for constructing automatic auxiliary driving system in the future and the optimization design of the traffic information system.

参考文献/References:

[1] Chen M Y, Fang Y H, Zheng X F. Phase space reconstruction for improving the classification of single trial EEG [J]. Biomedical Signal Processing and Control, 2014, 11(5): 10-16.
[2] Stuiver A, Brookhuis K A, de Waard D, et al. Short-term cardiovascular measures for driver support: increasing sensitivity for detecting changes in mental workload [J]. International Journal of Psychophysiology, 2014, 92(1): 35-41.
[3] 石京, 肖遥.驾驶心理对交通安全的影响 [J]. 交通信息与安全, 2014, 32(5): 65-70.
  Shi Jing, Xiao Yao. Effects of driver’s psychology on traffic safety[J]. Journal of Transport Information and Safety, 2014, 32(5): 65-70.(in Chinese)
[4] Venables L, Fairclough S H. The influence of performance feedback on goal-setting and mental effort regulation [J]. Motivation and Emotion, 2009, 33(1): 63-74.
[5] 曾庆新, 庄达民, 马银香.脑力负荷与目标辨认 [J]. 航空学报, 2007,28(S1): 76-80.
  Zeng Qingxin, Zhuang Damin, Ma Yinxiang. Mental workload and target identification [J]. Acta Aeronautica Et Astronautica Sinica, 2007, 28(S1): 76-80.(in Chinese)
[6] 潘津津, 焦学军, 姜劲, 等. 利用功能性近红外光谱成像方法评估脑力负荷 [J]. 光学学报, 2014, 34(11): 336-341.
  Pan Jinjin, Jiao Xuejun, Jiangjing, et al. Mental workload assessment based on functional near-infrared spectroscopy [J]. Acta Optica Sinica, 2014, 34(11): 336-341.(in Chinese)
[7] 康卫勇, 袁修干, 柳忠起, 等. 瞳孔的变化与脑力负荷关系的试验分析 [J]. 航天医学与医学工程, 2007, 20(5): 364-366.
  Kang Weiyong, Yuan Xiugan, Liu Zhongqi, et al. Analysis of relations between changes of pupil and mental workload [J]. Space Medicine & Medical Engineering, 2007, 20(5): 364-366.(in Chinese)
[8] Murata A. An attempt to evaluate mental workload using wavelet transform of EEG [J]. Human Factors: The Journal of the Human Factors and Ergonomics Society, 2005, 47(3): 498-508.
[9] Borghini G, Astolfi L, Vecchiato G, et al. Measuring neurophysiological signals in aircraft pilots and car drivers for the assessment of mental workload, fatigue and drowsiness[J]. Neuroscience & Biobehavioral Reviews, 2014, 44: 58-75.
[10] de Joux N, Russell P N, Helton W S. A functional near-infrared spectroscopy study of sustained attention to local and global target features [J]. Brain and Cognition, 2013, 81(3): 370-375.
[11] 朱彤, 吴玲, 路巧珍. 车载信息对驾驶人眨眼特性及负荷的影响规律[J]. 西南交通大学学报, 2015, 50(3): 504-510.
  Zhu Tong, Wu Ling, Lu Qiaozhen. Effects of in-vehicle information on driver eye blink duration and workload [J]. Journal of Southwest Jiaotong University, 2015, 50(3): 504-510.(in Chinese)

相似文献/References:

[1]陈阳.准熵的性质及其应用[J].东南大学学报(自然科学版),2006,36(2):222.[doi:10.3969/j.issn.1001-0505.2006.02.009]
 Chen Yang.Properties of quasi-entropy and their application[J].Journal of Southeast University (Natural Science Edition),2006,36(5):222.[doi:10.3969/j.issn.1001-0505.2006.02.009]
[2]龚坚,李立源,陈维南.二维熵阈值分割的快速算法[J].东南大学学报(自然科学版),1996,26(4):33.[doi:10.3969/j.issn.1001-0505.1996.04.007]
 Gong Jian,Li Liyuan,Chen Weinan.A Fast Two Dimensonal Entropic Thresholding Method[J].Journal of Southeast University (Natural Science Edition),1996,26(5):33.[doi:10.3969/j.issn.1001-0505.1996.04.007]

备注/Memo

备注/Memo:
收稿日期: 2014-11-20.
作者简介: 郭孜政(1982—),男,博士,副教授;张骏(联系人),男,高级工程师,zhangjun@swjtu.edu.cn.
基金项目: 国家自然科学基金资助项目(51108390,U1234206).
引用本文: 郭孜政,潘毅润,潘雨帆,等.基于EEG熵值的驾驶员脑力负荷水平识别方法[J].东南大学学报:自然科学版,2015,45(5):980-984. [doi:10.3969/j.issn.1001-0505.2015.05.028]
更新日期/Last Update: 2015-09-20