[1]郭圣文,赖春任,汪文胜,等.颞叶癫痫病患者的脑皮层多特征分类[J].东南大学学报(自然科学版),2015,45(6):1057-1060.[doi:10.3969/j.issn.1001-0505.2015.06.006]
 Guo Shengwen,Lai Chunren,Wang WenshengCheng Lina,et al.Classification using multiply cortical features of temporal lobe epilepsy patients[J].Journal of Southeast University (Natural Science Edition),2015,45(6):1057-1060.[doi:10.3969/j.issn.1001-0505.2015.06.006]
点击复制

颞叶癫痫病患者的脑皮层多特征分类()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
45
期数:
2015年第6期
页码:
1057-1060
栏目:
生物医学工程
出版日期:
2015-11-20

文章信息/Info

Title:
Classification using multiply cortical features of temporal lobe epilepsy patients
作者:
郭圣文1赖春任1汪文胜2成丽娜2吴凯1岑桂英1池敏越1
1华南理工大学材料科学与工程学院, 广州 510006; 2广东三九脑科医院影像诊断中心, 广州 510510
Author(s):
Guo Shengwen1 Lai Chunren1 Wang Wensheng2Cheng Lina2 Wu Kai1 Cen Guiying1 Chi Minyue1
1School of Material Science and Engineering, South China University of Technology, Guangzhou 510006, China
2Medical Imaging Center, Guangdong 999 Brain Hospital, Guangzhou 510510, China
关键词:
颞叶癫痫 脑皮层特征 支持向量机 分类
Keywords:
temporal lobe epilepsy cortical features support vector machine classification
分类号:
R445.2;TP391.41
DOI:
10.3969/j.issn.1001-0505.2015.06.006
摘要:
为了自动识别左、右侧颞叶癫痫病患者,提出了一种基于脑皮层结构特征的分类方法.采集了21例左侧TLE患者(LTLE)、18例右侧TLE患者(RTLE)与28例健康正常人(NC)的脑结构磁共振图像,提取与分析其脑皮层形态结构特征.为了降低特征维数,利用递归特征消除法获取对分类有效的主要特征.然后,采用支持向量机对3组人群进行分类. 结果表明,大脑皮层表面积为最佳分类特征,灰质体积也具有突出的分类能力,皮层厚度识别不同侧TLE的能力稍差,平均曲率对右侧TLE与健康人群的区分能力相对较弱.对分类有重要影响的脑区主要分布于颞叶、额叶与顶叶,尤其是大脑左侧脑区.由此证明利用脑皮层特征可以有效地区分不同侧TLE患者和健康正常人,TLE患者的左脑更易受损.研究结果有助于理解TLE患者的病理机制与进展规律、确定病灶位置及实现自动诊断.
Abstract:
A classification method based on cortical features is proposed to automatically discriminate left temporal lobe epilepsy(LTLE)and right temporal lobe epilepsy(RTLE). Brain structural magnetic resonance images from 21 LTLE patients, 18 RTLE patients and 28 NCs(normal controls)are collected, and the morphological cortical features are extracted and analyzed. In order to reduce features dimensions, the recursive feature elimination(RFE)strategy is applied to determine salient features for classification. Then, support vector machine(SVM)is used to classify the three cohorts. The results show that the surface area is the best feature for classification, and the gray matter volume has also prominent capability in discrimination. The cortical thickness exhibits limited ability to differentiate LTLE patients from RTLE patients, and the mean curvature behaves relatively weakly to distinguish RTLE patients from NCs. The dominant regions for classification are located in the temporal, the frontal and parietal lobe, especially in the left hemisphere. The effectiveness of cortical features for discrimination of three cohorts is proved, and the brain regions in left hemisphere of TLE patients are more vulnerable to injury. This work provides potential information to understand the pathogenic mechanism and progress, determine the focus and facilitate computer-aided diagnosis of TLE patients.

参考文献/References:

[1] Martinoni M, Marucci G, Rubboli G, et al. Focal cortical dysplasias in temporal lobe epilepsy surgery: challenge in defining unusual variants according to the last ILAE classification[J]. Epilepsy & Behavior, 2015, 45: 212-216.
[2] Keller S S, Roberts N. Voxel-based morphometry of temporal lobe epilepsy: an introduction and review of the literature[J]. Epilepsia, 2008, 49(5): 741-757.
[3] Li H, Xue Z, Dulay M F, et al. Fractional anisotropy asymmetry and the side of seizure origin for partial onset-temporal lobe epilepsy[J]. Computerized Medical Imaging and Graphics, 2014, 38(6): 481-489.
[4] Besson P, Dinkelacker V, Valabregue R, et al. Structural connectivity differences in left and right temporal lobe epilepsy[J]. Neuroimage, 2014, 100: 135-144.
[5] Haneef Z, Lenartowicz A, Yeh H J, et al. Functional connectivity of hippocampal networks in temporal lobe epilepsy[J]. Epilepsia, 2014, 55(1): 137-145.
[6] Arle J E,Perrine K, Devinsky O, et al. Neural network analysis of preoperative variables and outcome in epilepsy surgery[J]. Journal of Neurosurgery, 1999, 90(6): 998-1004.
[7] Armañanzas R, Alonso-Nanclares L, DeFelipe-Oroquieta J, et al. Machine learning approach for the outcome prediction of temporal lobe epilepsy surgery[J]. PLOS ONE, 2013, 8(4): e62819-1-e62819-9.
[8] Focke N K, Yogarajah M, Symms M R, et al. Automated MR image classification in temporal lobe epilepsy[J]. Neuroimage, 2012, 59(1): 356-362.
[9] Fischl B. FreeSurfer[J]. Neuroimage, 2012, 62(2): 774-781.
[10] Desikan R S, Ségonne F, Fischl B, et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest[J]. Neuroimage, 2006, 31(3): 968-980.
[11] Cortes C, Vapnik V. Support-vector networks[J]. Machine Learning, 1995, 20(3): 273-297.
[12] Fan R E, Chen P H, Lin C J. Working set selection using second order information for training support vector machines[J]. The Journal of Machine Learning Research, 2005, 6: 1889-1918.
[13] Guyon I, Weston J, Barnhill S, et al. Gene selection for cancer classification using support vector machines[J]. Machine Learning, 2002, 46(1/2/3): 389-422.
[14] Rakic P. Defects of neuronal migration and the pathogenesis of cortical malformations[J]. Progress in Brain Research, 1988, 73: 15-37.

相似文献/References:

[1]郭圣文,吴聪玲,赖春任,等.轻度认知障碍患者脑皮层多特征分析与分类[J].东南大学学报(自然科学版),2017,47(3):483.[doi:10.3969/j.issn.1001-0505.2017.03.012]
 Guo Shengwen,Wu Congling,Lai Chunren,et al.Analysis and classification on multiple cortical features of patients with mild cognitive impairment[J].Journal of Southeast University (Natural Science Edition),2017,47(6):483.[doi:10.3969/j.issn.1001-0505.2017.03.012]

备注/Memo

备注/Memo:
收稿日期: 2015-06-03.
作者简介: 郭圣文(1971—),男,博士,教授,shwguo@scut.edu.cn.
基金项目: 国家自然科学基金资助项目(31371008, 81171179)、广东省科技计划资助项目(503253185076).
引用本文: 郭圣文,赖春任,汪文胜,等.颞叶癫痫病患者的脑皮层多特征分类[J].东南大学学报:自然科学版,2015,45(6):1057-1060. [doi:10.3969/j.issn.1001-0505.2015.06.006]
更新日期/Last Update: 2015-11-20