[1]常洪雷,穆松,刘建忠.防腐剂和养护制度对混凝土孔结构特征及水分损失的影响[J].东南大学学报(自然科学版),2015,45(6):1155-1162.[doi:10.3969/j.issn.1001-0505.2015.06.024]
 Chang Honglei,Mu Song,Liu Jianzhong.Influence of anticorrosion agent and curing regimes on pore structure feature and moisture loss of concrete[J].Journal of Southeast University (Natural Science Edition),2015,45(6):1155-1162.[doi:10.3969/j.issn.1001-0505.2015.06.024]
点击复制

防腐剂和养护制度对混凝土孔结构特征及水分损失的影响()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
45
期数:
2015年第6期
页码:
1155-1162
栏目:
材料科学与工程
出版日期:
2015-11-20

文章信息/Info

Title:
Influence of anticorrosion agent and curing regimes on pore structure feature and moisture loss of concrete
作者:
常洪雷12穆松2刘建忠2
1东南大学材料科学与工程学院, 南京211189; 2江苏省建筑科学研究院有限公司高性能土木工程材料国家重点实验室, 南京210008
Author(s):
Chang Honglei12 Mu Song2 Liu Jianzhong2
1School of Material Science and Engineering, Southeast University, Nanjing 211189, China
2State Key Laboratory of High Performance Civil Engineering Materials, Jiangsu Research Institute Co., Ltd., Nanjing 210008, China
关键词:
防腐剂 养护制度 水分损失 水吸附孔隙率 孔结构 界面过渡区
Keywords:
anticorrosion agent curing regime moisture loss water absorption porosity pore structure interfacial transition zone
分类号:
TU528
DOI:
10.3969/j.issn.1001-0505.2015.06.024
摘要:
为了改善混凝土的防腐蚀性能,采用压汞、扫描电子显微镜、水吸附孔隙率测试以及干燥过程水分质量损失测试等方法,研究了防腐剂和3种养护制度对混凝土孔结构特征、界面过渡区微观形貌以及干燥过程水分损失的影响.研究结果表明,防腐剂的掺入可以降低混凝土孔隙率和平均孔径,使得影响混凝土传输性能的大毛细孔(孔径大于等于100 nm)的体积占有率明显减小,有效改善了孔结构,密实了界面过渡区,同时减少了干燥过程的水分损失.半浸泡养护的混凝土孔结构发展不完善,界面过渡区较为疏松,存在微细裂纹,混凝土较易失去内部水分.防腐剂使得侵蚀性介质不易进入混凝土内部,防腐性能显著提高,而半浸泡养护易造成腐蚀.
Abstract:
To improve corrosion resistance of concrete, mercury intrusion porosimetry, interfacial transition zone(ITZ)microphotography, water absorption porosity test and moisture loss test were employed to investigate the influences of anticorrosion agent and three curing regimes on pore structure, ITZ, and moisture loss evolution during drying. The results show that the addition of the anticorrosion agent can reduce concrete porosity and average pore size, lower the ratio of large pores(pore size larger than 100 nm)that affects concrete’s transport performance, improve pore structure, and compact interfacial transition zone. Meanwhile, it can decrease and slow down moisture loss during drying process. As for the curing methods, the pore structure of concrete under partial immersion is not well developed, and the interfacial transition zone is unconsolidated with micro cracks, leading to easier and faster loss of water content. Therefore, the addition of the anticorrosion agent improves corrosion resistance of concrete by preventing corrosion medium entering into concrete, while corrosion is more likely to occur under partial immersion curing condition.

参考文献/References:

[1] Arya C, Bioubakhsh S, Vassie P. Chloride penetration in concrete subject to wet/dry cycling: influence of moisture content[J]. Structures and Buildings, 2013,167(2):94-107.
[2] Costa A, Appleton J. Chloride penetration into concrete in marine environment—part 1: main parameters affecting in chloride penetration[J]. Materials and Structures,1999,32(5):252-259.
[3] Meira G R, Andrade C, Padaratz I J, et al. Chloride penetration into concrete structures in the marine atmosphere zone—relationship between deposition of chlorides on the wet candle and chlorides accumulated into concrete[J]. Cement and Concrete Composites, 2007, 29(9): 667-676.
[4] Fraj A B, Bonnet S, Khelidj A. New approach for coupled chloride/moisture transport in non-saturated concrete with and without slag[J]. Construction & Building Materials, 2012,35:761-771.
[5] Ustabas I. The effect of capillarity on chloride transport and the prediction of the accumulation region of chloride in concretes with reinforcement corrosion[J]. Construction & Building Materials, 2012, 28(1):640-647.
[6] 张迪, 刘斌云, 徐天杰. 防腐剂对混凝土抗硫酸盐性能影响的试验研究[J]. 混凝土, 2013(10): 95-97,100.
  Zhang Di, Liu Binyun, Xu Tianjie. Test research on sulfate-corrosion resistance ability influence of anti-corrosion agent to concrete[J]. Concrete, 2013(10): 95-97,100.(in Chinese)
[7] 杨本菊. 混凝土抗硫酸盐侵蚀防腐剂的试验研究[D]. 青岛: 青岛理工大学土木工程学院, 2011.
[8] Soylev T A, Richardson M G. Corrosion inhibitors for steel in concrete: state-of-the-art report[J]. Construction and Building Materials, 2008, 22(4): 609-622.
[9] 肖斐, 王志刚, 崔洪涛,等. 防腐剂抑制混凝土腐蚀的机理分析[C]// 中国硅酸盐学会水泥分会首届学术年会论文集.中国焦作,2009.
  Xiao Fei, Wang Zhigang, Cui Hongtao, et al. Mechanism analysis about preservative restrains corrosion of concrete[C]//The 1st Academic Annual Conference Proceeding of the Chinese Ceramic Society Cement Branch. Jiaozuo, China, 2009.(in Chinese)
[10] Ozer B, Ozkul M H. The influence of initial water curing on the strength development of ordinary Portland and pozzolanic cement concretes [J]. Cem Concr Res, 2004, 34(1):13-21.
[11] 柴苗, 朱国飞, 徐思印. 矿物掺合料和养护方式对轻骨料混凝土吸水性的影响[J]. 混凝土, 2014(4): 152-154.
  Chai Miao,Zhu Guofei,Xu Siyin. Effect of mineral admixtures and curing conditions on the water absorption of light weight aggregate concrete[J]. Concrete, 2014(4): 152-154.(in Chinese)
[12] 沈德建, 张莉, 栾澔, 等. 养护方式对混凝土温度场影响试验研究与定量分析[J]. 建筑技术, 2010, 41(2):174-177.
  Shen Dejian, Zhang Li, Luan Hao, et al. Experimental study and simulation analysis on temperature field of concrete un different conservation type[J]. Architecture Technology, 2010, 41(2):174-177.(in Chinese)
[13] Ibrahim M, Shameem M, Al-Mehthel M, et al. Effect of curing methods on strength and durability of concrete under hot weather conditions[J]. Cement and Concrete Composites, 2013,41(8):60-69.
[14] Chia K S, Zhang M H. Water permeability and chloride penetrability of high-strength lightweight aggregate concrete [J]. Cem Concr Res, 2002, 32(4): 639-645.
[15] Liu J, Qiu Q W, Xing F, et al. Permeation properties and pore structure of surface layer of fly ash concrete[J]. Materials, 2014,7:4282-4296.
[16] Metha P K. Studies on blended Portland cements containing Santorin earth [J]. Cem Concr Res, 1981,11(4): 507-518.
[17] Bensted J, Barnes P. 水泥的结构和性能[M]. 廖欣,译. 北京:化学工业出版社, 2009: 89.
[18] 王信刚, 马保国, 陈礼和. 梯度结构混凝土的离子传输性能与微观结构[J]. 硅酸盐学报, 2008, 36(7): 920-926.
  Wang Xingang, Ma Baoguo, Chen Lihe. Ion transport property and microstructure of gradient structural concrete[J]. Journal of the Chinese Ceramic Society, 2008, 36(7): 920-926.(in Chinese)
[19] 陈惠苏, 孙伟, Stroeven P J. 水泥基复合材料界面对材料宏观性能的影响[J]. 建筑材料学报, 2005, 8(1): 51-62.
  Chen Huisu, Sun Wei, Stroeven P J. Review on the study of effect of ITZ on the macro properties of cementitious composites[J]. Building Materials,2005, 8(1): 51-62.(in Chinese)
[20] Cam H T, Neithalath N. Moisture and ionic transport in concretes containing coarse limestone power[J]. Cement and Concrete Composite, 2010,32:486-496.
[21] 王培铭, 徐乾慰. 材料研究方法[M]. 北京: 科学出版社, 2005:372-373.
[22] 孙伟,缪昌文. 现代混凝土理论与技术[M]. 北京: 科学出版社, 2012: 196-199.

相似文献/References:

[1]赖建中,孙伟,詹炳根.生态型RPC材料的断裂力学行为研究[J].东南大学学报(自然科学版),2004,34(1):92.[doi:10.3969/j.issn.1001-0505.2004.01.022]
 Lai Jianzhong,Sun Wei,Zhan Binggen.Study on the fracture mechanical properties of ecological reactive powder concrete[J].Journal of Southeast University (Natural Science Edition),2004,34(6):92.[doi:10.3969/j.issn.1001-0505.2004.01.022]

备注/Memo

备注/Memo:
收稿日期: 2015-03-10.
作者简介: 常洪雷(1988—),男,博士生;穆松(联系人),男,博士,工程师,musong@cnjsjk.cn.
引用本文: 常洪雷,穆松,刘建忠.防腐剂和养护制度对混凝土孔结构特征及水分损失的影响[J].东南大学学报:自然科学版,2015,45(6):1155-1162. [doi:10.3969/j.issn.1001-0505.2015.06.024]
更新日期/Last Update: 2015-11-20