[1]沈奇真,潘钢华,占华刚,等.加速碳化条件下界面过渡区的纳米力学性能[J].东南大学学报(自然科学版),2016,46(1):146-151.[doi:10.3969/j.issn.1001-0505.2016.01.024]
 Shen Qizhen,Pan Ganghua,Zhan Huagang,et al.Nanomechanical properties of interfacial transition zone under accelerated carbonation[J].Journal of Southeast University (Natural Science Edition),2016,46(1):146-151.[doi:10.3969/j.issn.1001-0505.2016.01.024]
点击复制

加速碳化条件下界面过渡区的纳米力学性能()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
46
期数:
2016年第1期
页码:
146-151
栏目:
材料科学与工程
出版日期:
2016-01-20

文章信息/Info

Title:
Nanomechanical properties of interfacial transition zone under accelerated carbonation
作者:
沈奇真1潘钢华12占华刚1李焦1
1东南大学材料科学与工程学院, 南京 211189; 2东南大学江苏省土木工程材料重点实验室, 南京211189
Author(s):
Shen Qizhen1 Pan Ganghua12 Zhan Huagang1 Li Jiao1
1School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
2Jiangsu Key Laboratory of Civil Engineering Materials, Southeast University, Nanjing 211189, China
关键词:
水泥基材料 界面过渡区 碳化 纳米力学性能
Keywords:
cement-based material interfacial transition zone carbonation nanomechanical property
分类号:
TU528
DOI:
10.3969/j.issn.1001-0505.2016.01.024
摘要:
为了研究界面过渡区(ITZ)对碳化速率的影响,采用纳米压痕技术研究了不同水胶比试件碳化前后界面过渡区的纳米力学性能演化规律.结果表明,当水胶比λ=0.53和0.35时,试件界面过渡区的平均弹性模量分别由碳化前的29.08和33.21 GPa增加到碳化后的43.72和41.74 GPa,而当λ=0.23时试件碳化后界面过渡区的平均弹性模量则有所降低.同时,各试件界面过渡区的平均硬度在碳化后均有所增大,界面过渡区的尺寸则有所减小.因此,在加速碳化条件下,不同水胶比试件界面过渡区的纳米力学性能存在较大差异,且当λ=0.53时碳化对界面过渡区纳米力学性能的影响最显著.
Abstract:
In order to study the influence of the interfacial transition zone(ITZ)on the carbonation rate, the nanomechanical property evolution of the ITZ of specimens with different water-cement ratios, both before and after carbonation, is investigated by using nanoindentation technique. The results show that after carbonation, the average elasticity modulus of the ITZ of the specimens with the water-binder ratio λ of 0.53 and 0.35 increase from 29.08 and 33.21 GPa to 43.72 and 41.74 GPa, respectively, while that of the specimen with λ=0.23 decreases. Meanwhile, after carbonation, the average hardness of each specimen increases but the size of the ITZ decreases. Therefore,under the accelerated carbonation condition, the nanomechanical properties of the ITZ of specimens with different water-cement ratios are distant, and the influence of carbonation on the nanomechanical properties of the ITZ is the most significant when λ=0.53.

参考文献/References:

[1] Akçaogˇlu T, Tokyay M, Çelik T. Assessing the ITZ microcracking via scanning electron microscope and its effect on the failure behavior of concrete[J]. Cement and Concrete Research, 2005, 35(2): 358-363. DOI:10.1016/j.cemconres.2004.05.042.
[2] Mondal P. Nanomechanical properties of cementitious materials [D]. Evanston, IL,USA: Northwest University, 2008.
[3] Dinakar P, Babu K G, Santhanam M. Durability properties of high volume fly ash self compacting concretes[J]. Cement and Concrete Composites, 2008, 30(10): 880-886. DOI:10.1016/j.cemconcomp.2008.06.011.
[4] Valcuende M, Parra C. Natural carbonation of self-compacting concretes[J]. Construction and Building Materials, 2010, 24(5): 848-853. DOI:10.1016/j.conbuildmat.2009.10.021.
[5] Xiong G Q, Luo B Y, Wu X, et al. Influence of silane coupling agent on quality of interfacial transition zone between concrete substrate and repair materials[J]. Cement and Concrete Composites, 2006, 28(1): 97-101.DOI:10.1016/j.cemconcomp.2005.09.004.
[6] Leemann A, Münch B, Gasser P, et al. Influence of compaction on the interfacial transition zone and the permeability of concrete[J]. Cement and Concrete Research, 2006, 36(8): 1425-1433. DOI:10.1016/j.cemconres.2006.02.010.
[7] Maghsoodi V, Ramezanianpour A. Effects of volumetric aggregate fraction on transport properties of concrete and mortar[J]. Arabian Journal for Science and Engineering, 2009, 34(2): 327-335.
[8] Houst Y F, Wittmann F H. Depth profiles of carbonates formed during natural carbonation[J]. Cement and Concrete Research, 2002, 32(12):1923-1930.
[9] Hyvert N, Sellier A, Duprat F, et al. Dependency of C-S-H carbonation rate on CO2 pressure to explain transition from accelerated tests to natural carbonation[J]. Cement and Concrete Research, 2010, 40(11): 1582-1589. DOI:10.1016/j.cemconres.2010.06.010.
[10] Rostami V, Shao Y, Boyd A J, et al. Microstructure of cement paste subject to early carbonation curing[J]. Cement and Concrete Research, 2012, 42(1): 186-193. DOI:10.1016/j.cemconres.2011.09.010.
[11] Bouchaala F, Payan C, Garnier V, et al. Carbonation assessment in concrete by nonlinear ultrasound[J]. Cement and Concrete Research, 2011, 41(5): 557-559. DOI:10.1016/j.cemconres.2011.02.006.
[12] Basheer L, Basheer P A M, Long A E. Influence of coarse aggregate on the permeation, durability and the microstructure characteristics of ordinary Portland cement concrete[J]. Construction and Building Materials, 2005, 19(9): 682-690. DOI:10.1016/j.conbuildmat.2005.02.022.

相似文献/References:

[1]高礼雄,杜雪刚,孔丽娟.石灰石粉对水泥基材料抗碳硫硅钙石侵蚀破坏的定量分析[J].东南大学学报(自然科学版),2012,42(3):483.[doi:10.3969/j.issn.1001-0505.2012.03.017]
 Gao Lixiong,Du Xuegang,Kong Lijuan.Quantitative analysis of effect of limestone powder on resistance of thaumasite attack to cement-based materials[J].Journal of Southeast University (Natural Science Edition),2012,42(1):483.[doi:10.3969/j.issn.1001-0505.2012.03.017]
[2]肖海军,孙伟,蒋金洋,等.水泥基材料微结构的反复压汞法表征[J].东南大学学报(自然科学版),2013,43(2):371.[doi:10.3969/j.issn.1001-0505.2013.02.027]
 Xiao Haijun,Sun Wei,Jiang Jinyang,et al.Characterization of microstructure of cement-based materials by multi-cycle-MIP method[J].Journal of Southeast University (Natural Science Edition),2013,43(1):371.[doi:10.3969/j.issn.1001-0505.2013.02.027]
[3]周伟玲,孙伟,陈翠翠,等.应用纳米压痕技术表征水泥基材料微观力学性能[J].东南大学学报(自然科学版),2011,41(2):370.[doi:10.3969/j.issn.1001-0505.2011.02.030]
 Zhou Weiling,Sun Wei,Chen Cuicui,et al.Characterization for micro mechanical properties of cementitious materials by nanoindentation technique[J].Journal of Southeast University (Natural Science Edition),2011,41(1):370.[doi:10.3969/j.issn.1001-0505.2011.02.030]
[4]张亚梅,余保英.掺超细矿粉水泥基材料早龄期水化产物及孔结构特性[J].东南大学学报(自然科学版),2011,41(4):815.[doi:10.3969/j.issn.1001-0505.2011.04.030]
 Zhang Yamei,Yu Baoying.Characteristics of hydration products and pore structure in cement-based material with ultra fine slag at early ages[J].Journal of Southeast University (Natural Science Edition),2011,41(1):815.[doi:10.3969/j.issn.1001-0505.2011.04.030]
[5]王育江,刘加平,田倩,等.水泥基材料的塑性抗拉强度[J].东南大学学报(自然科学版),2014,44(2):369.[doi:10.3969/j.issn.1001-0505.2014.02.025]
 Wang Yujiang,Liu Jiaping,Tian Qian,et al.Tensile strength of cement based materials at plastic stage[J].Journal of Southeast University (Natural Science Edition),2014,44(1):369.[doi:10.3969/j.issn.1001-0505.2014.02.025]
[6]刘巧玲,孙伟,孙波,等.碳纳米管水性分散体的制备及其对水泥砂浆强度的影响[J].东南大学学报(自然科学版),2014,44(3):662.[doi:10.3969/j.issn.1001-0505.2014.03.037]
 Liu Qiaoling,Sun Wei,et al.Preparation of carbon nanotubes solution and its effects on mechanical properties of cement mortar[J].Journal of Southeast University (Natural Science Edition),2014,44(1):662.[doi:10.3969/j.issn.1001-0505.2014.03.037]
[7]常洪雷,穆松,刘建忠.防腐剂和养护制度对混凝土孔结构特征及水分损失的影响[J].东南大学学报(自然科学版),2015,45(6):1155.[doi:10.3969/j.issn.1001-0505.2015.06.024]
 Chang Honglei,Mu Song,Liu Jianzhong.Influence of anticorrosion agent and curing regimes on pore structure feature and moisture loss of concrete[J].Journal of Southeast University (Natural Science Edition),2015,45(1):1155.[doi:10.3969/j.issn.1001-0505.2015.06.024]
[8]施惠生,张林涛,吴凯,等.不同集料界面过渡区对氯离子传输特性的影响[J].东南大学学报(自然科学版),2018,48(6):1170.[doi:10.3969/j.issn.1001-0505.2018.06.027]
 Shi Huisheng,Zhang Lintao,Wu Kai,et al.Influence of interface transition zone of different aggregates on chloride transport properties[J].Journal of Southeast University (Natural Science Edition),2018,48(1):1170.[doi:10.3969/j.issn.1001-0505.2018.06.027]
[9]常洪雷,金祖权.无碳化影响时干湿交替下水泥基材料中氯离子传输行为[J].东南大学学报(自然科学版),2019,49(6):1153.[doi:10.3969/j.issn.1001-0505.2019.06.019]
 Chang Honglei,Jin Zuquan.Chloride transport behavior in cementitious-based materials under cyclic drying-wetting condition without influence of carbonation[J].Journal of Southeast University (Natural Science Edition),2019,49(1):1153.[doi:10.3969/j.issn.1001-0505.2019.06.019]
[10]占华刚,潘钢华,王宇东.加速碳化条件下混凝土界面过渡区微结构[J].东南大学学报(自然科学版),2015,45(3):569.[doi:10.3969/j.issn.1001-0505.2015.03.027]
 Zhan Huagang,Pan Ganghua,Wang Yudong.Microstructure of interface transition zone in concrete under accelerated carbonation[J].Journal of Southeast University (Natural Science Edition),2015,45(1):569.[doi:10.3969/j.issn.1001-0505.2015.03.027]

备注/Memo

备注/Memo:
收稿日期: 2015-07-20.
作者简介: 沈奇真(1988—),女,博士生;潘钢华(联系人),男,博士,教授,博士生导师, 101004929@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(51178103).
引用本文: 沈奇真,潘钢华,占华刚,等.加速碳化条件下界面过渡区的纳米力学性能[J].东南大学学报(自然科学版),2016,46(1):146-151. DOI:10.3969/j.issn.1001-0505.2016.01.024.
更新日期/Last Update: 2016-01-20