[1]王帅,吴新,李诗,等.防腐镀(涂)层管束表面对流凝结换热特性[J].东南大学学报(自然科学版),2016,46(2):289-296.[doi:10.3969/j.issn.1001-0505.2016.02.011]
 Wang Shuai,Wu Xin,Li Shi,et al.Convection condensation heat transfer characteristics on different antiseptic pipe surfaces[J].Journal of Southeast University (Natural Science Edition),2016,46(2):289-296.[doi:10.3969/j.issn.1001-0505.2016.02.011]
点击复制

防腐镀(涂)层管束表面对流凝结换热特性()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
46
期数:
2016年第2期
页码:
289-296
栏目:
能源与动力工程
出版日期:
2016-03-20

文章信息/Info

Title:
Convection condensation heat transfer characteristics on different antiseptic pipe surfaces
作者:
王帅吴新李诗籍晓洋赵长遂
东南大学能源热转换及其过程测控教育部重点实验室, 南京 210096
Author(s):
Wang Shuai Wu Xin Li Shi Ji Xiaoyang Zhao Changsui
Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing 210096, China
关键词:
凝结 对流 传热 腐蚀 余热回收
Keywords:
condensation convection heat transfer corrosion heat recovery
分类号:
TK11
DOI:
10.3969/j.issn.1001-0505.2016.02.011
摘要:
为了考察低温烟气余热回收过程中防腐镀(涂)层管束表面的耐蚀性能和维持珠状凝结的能力,分别对紫铜管和Ni-P镀层、Ni-P-Cu镀层和聚四氟乙烯(PTFE)涂层管表面的腐蚀过程和含湿气体(水蒸气和空气混合,水蒸气质量分数为6%~16%)横掠这4种单排水平管束的对流凝结换热过程进行了实验研究及分析.结果表明:Ni-P镀层和Ni-P-Cu镀层管表面耐蚀性能明显优于紫铜管,PTFE涂层管表面具有最佳的耐蚀性能;Ni-P镀层、Ni-P-Cu镀层和PTFE涂层管束凝结换热系数比铜管管束分别提高5%~35%,14%~61%和10%~48%,具有明显促进珠状凝结的能力,Ni-P-Cu镀层管束具有最佳的凝结换热效果.在低温烟气余热回收的实际应用中,当烟气的腐蚀性较大时,优先选择PTFE涂层换热管束;当烟气的腐蚀性较小时,则首选换热效果最好的Ni-P-Cu镀层换热管束.对实验数据进行多元线性回归分析,得到了含湿气体横掠这4种单排水平管束的对流凝结复合换热实验关联式,关联式预测值与实验值的相对误差在±15%以内,因而关联式具有较高的准确性.
Abstract:
To investigate the corrosion resistance and condensation characteristics on different antiseptic pipe surfaces during flue gas heat recovery, the corrosion tests on the surfaces of copper pipes, Ni-P, Ni-P-Cu and polytetrafluoroethylene(PTFE)coating pipes and the convection condensation heat transfer experiments on the four pipes during flue gas heat recovery were conducted. In the heat transfer experiments, water vapor mass fraction of wet flue gas was ranged from 6% to 16%. The mixture of air and water vapor was adopted to simulate the actual flue gas and the cooling water flowed in pipes. It is found that the corrosion resistance of Ni-P and Ni-P-Cu coating pipes is superior to that of copper pipes, and PTFE coating pipes have the optimal corrosion resistance. Besides, compared with copper pipes, the condensation heat transfer coefficients of Ni-P, Ni-P-Cu and PTFE coating pipes increase by 5% to 35%, 14% to 61%, and 10% to 48%, respectively. Ni-P-Cu coating pipe surfaces achieved optimal condensation heat transfer. In the practical application of flue gas heat recovery, while the corrosivity of flue gas is serious, PTFE coating pipes should be given preference. However, when it is slight, Ni-P-Cu coating pipes are the first choice. Based on multiple linear regression analysis of the experimental data, empirical correlations of convection condensation heat transfer of the four pipes during flue gas heat recovery are obtained. The relative errors between the values from the empirical correlations and the experimental measurements are within ±15%, which proves that the empirical correlations possess high accuracy.

参考文献/References:

[1] 李慧君,王树众,张斌,等.冷凝式燃气锅炉烟气余热回收可行性经济分析[J].工业锅炉,2003(2):1-4,12. DOI:10.3969/j.issn.1004-8774.2003.02.001.
  Li Huijun, Wang Shuzhong, Zhang Bin, et al. Economic analysis of the feasibility of reclaiming residual heat of flue gas of a condensation boiler burning gas[J]. Industrial Boiler, 2003(2): 1-4, 12. DOI:10.3969/j.issn.1004-8774.2003.02.001.(in Chinese)
[2] Chung B J, Kim S, Chan K M. An experimental investigation of film condensation of flowing mixtures of steam and air on a vertical flat plate[J]. International Communications in Heat and Mass Transfer, 2004, 31(5): 703-710. DOI:10.1016/S0735-1933(04)00057-0.
[3] Hu H W, Tang G H. Theoretical investigation of stable dropwise condensation heat transfer on a horizontal tube [J]. Applied Thermal Engineering, 2014, 62: 671-679. DOI:10.1016/j.applthermaleng.2013.10.022.
[4] Bisetto A, Bortolin S, del Col D. Experimental analysis of steam condensation over conventional and superhydrophilic vertical surfaces[J]. Experimental Thermal and Fluid Science, 2015, 68: 216-227. DOI:10.1016/j.expthermflusci.2015.04.019.
[5] Abu-Orabi M. Modeling of heat transfer in dropwise condensation[J]. International Journal of Heat and Mass Transfer, 1998, 41(1): 81-87. DOI: 10.1016/s0017-9310(97)00094-x.
[6] 吴玉庭,杨春信,袁修干,等.限制热阻对珠状凝结换热的影响[J].化工学报,2001,52(10):869-901.
  Wu Yuting, Yang Chunxin, Yuan Xiugan, et al. Effect of constriction resistance on dropwise condensation heat transfer [J]. Journal of Chemical Industry and Engineering(China), 2001, 52(10): 869-901.(in Chinese)
[7] 程延海,朱真才,韩正铜,等.镀层换热表面凝结传热实验研究[J].中国电机工程学报,2010,30(8):27-31.
  Cheng Yanhai, Zhu Zhencai, Han Zhengtong, et al. Experimental study on condensation heat transfer of deposit heat exchange surface [J]. Proceedings of the CSEE, 2010, 30(8): 27-31.(in Chinese)
[8] 马学虎,徐敦颀,林纪方.实现滴状冷凝的超薄聚合物表面冷凝传热的研究[J].化工学报,1993,44(2):165-170.
  Ma Xuehu, Xu Dunqi, Lin Jifang. Dropwise condensation on superthin polymer surface [J]. Journal of Chemical Industry and Engineering(China), 1993, 44(2): 165-170.(in Chinese)
[9] Dehbi A. A generalized correlation for steam condensation rates in the presence of air under turbulent free convection[J]. International Journal of Heat and Mass Transfer, 2015, 86: 1-15. DOI:10.1016/j.ijheatmasstransfer.2015.02.034.
[10] Xu X Q, Miao J, Bai Z Q, et al. The corrosion behavior of electroless Ni-P coating in Cl-/H2S environment [J]. Applied Surface Science, 2012, 258(22): 8802-8806.DOI:10.1016/j.apsusc.2012.05.094.
[11] Liu G C, Yang L J, Wang L D, et al. Corrosion behavior of electroless deposited Ni-Cu-P coating in flue gas condensate [J]. Surface and Coatings Technology, 2010, 204(21/22): 3382-3386. DOI:10.1016/j.surfcoat.2010.03.056.
[12] 杨世铭,陶文铨.传热学[M].北京:高等教育出版社,2006:246-249.
[13] 陈元彩,袁叔贵,萧继闯.铝基化学镀镍磷合金层耐蚀性及其机理[J].电镀与涂饰,1994,13(1):16-21.
  Chen Yuancai, Yuan Shugui, Xiao Jichuang. Corrosion resistance of Ni-P alloy electroless deposit on aluminium and its mechanism [J]. Electroplating & Finishing, 1994, 13(1): 16-21.(in Chinese)
[14] 阳利军,刘贵昌,王随林,等.Ni-Cu-P合金镀层在燃气冷凝换热器上的应用[J].电化学,2008,14(3):325-329.
  Yang Lijun, Liu Guichang, Wang Suilin, et al. Applications of electroless deposition Ni-Cu-P coating on the gas condensing exchanger [J]. Electrochemistry, 2008, 14(3): 325-329.(in Chinese)
[15] 笪耀东,车得福,庄正宁,等.高水分烟气对流冷凝换热模拟实验研究[J].工业锅炉,2003(1):12-15,34.
  Da Yaodong, Che Defu, Zhuang Zhengning, et al. An experimental study on forced convection-condensation heat transfer of the flue gas with high moisture [J]. Industrial Boiler, 2003(1): 12-15,34.(in Chinese)

相似文献/References:

[1]刘中良,施明恒.一种新的用于对流─扩散问题的差分格式[J].东南大学学报(自然科学版),1996,26(2):24.[doi:10.3969/j.issn.1001-0505.1996.02.004]
 Liu Zhongliang,Shi Mingheng.A New Finite Difference Formulation for Convection-Diffusion Equations[J].Journal of Southeast University (Natural Science Edition),1996,26(2):24.[doi:10.3969/j.issn.1001-0505.1996.02.004]

备注/Memo

备注/Memo:
收稿日期: 2015-10-20.
作者简介: 王帅(1989—),男,硕士生;吴新(联系人),男,副教授,wuxin@seu.edu.cn.
基金项目: “十二五”国家科技支撑计划资助项目(2012BAA02B01-02).
引用本文: 王帅,吴新,李诗,等.防腐镀(涂)层管束表面对流凝结换热特性[J].东南大学学报(自然科学版),2016,46(2):289-296. DOI:10.3969/j.issn.1001-0505.2016.00.000.
更新日期/Last Update: 2016-03-20