[1]张菀,贾民平,朱林.一种自适应Morlet小波滤波方法及其在滚动轴承早期故障特征提取中的应用[J].东南大学学报(自然科学版),2016,46(3):457-463.[doi:10.3969/j.issn.1001-0505.2016.03.001]
 Zhang Wan,Jia Minping,Zhu Lin.An adaptive Morlet wavelet filter method and its application in detecting early fault feature of ball bearings[J].Journal of Southeast University (Natural Science Edition),2016,46(3):457-463.[doi:10.3969/j.issn.1001-0505.2016.03.001]
点击复制

一种自适应Morlet小波滤波方法及其在滚动轴承早期故障特征提取中的应用
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
46
期数:
2016年第3期
页码:
457-463
栏目:
机械工程
出版日期:
2016-05-20

文章信息/Info

Title:
An adaptive Morlet wavelet filter method and its application in detecting early fault feature of ball bearings
作者:
张菀贾民平朱林
东南大学机械工程学院, 南京 211189
Author(s):
Zhang Wan Jia Minping Zhu Lin
School of Mechanical Engineering, Southeast University, Nanjing 211189, China
关键词:
滚动轴承 特征提取 早期故障 Morlet小波 混洗蛙跳算法
Keywords:
ball bearing feature detection early fault Morlet wavelet shuffled frog leaping algorithm
分类号:
TH165.3;TH17
DOI:
10.3969/j.issn.1001-0505.2016.03.001
摘要:
针对滚动轴承早期故障信号微弱,故障特征难以提取的问题,提出了一种基于混洗蛙跳算法(shuffled frog leaping algorithm,SFLA)的自适应Morlet小波滤波方法.首先利用自相关分析去除宽频随机噪声,然后通过SFLA优化Morlet小波的滤波参数,获得在最小信息熵下的中心频率和滤波带宽.由自适应Morlet小波滤波器获得的滤波信号,其中的冲击成分可以很好地被表征.最后对滤波后的信号做包络谱分析即可提取滚动轴承的故障频率.实验表明,自适应Morlet小波滤波方法可以成功地从低信噪比信号中提取出周期冲击特征,对于滚动轴承早期故障振动信号,能够有效地提取冲击特征频率实现滚动轴承早期故障诊断.
Abstract:
Considering the early fault of ball bearings being weak and the difficulty of detecting the fault feature, an adaptive Morlet wavelet filter method based on shuffled frog leaping algorithm(SFLA)is proposed. First, the auto-correlation analysis is utilized to filter the broadband random noise. Then, the optimal center frequency and the filter bandwidth under the minimum information entropy are acquired by optimizing the filtering parameters of Morlet wavelet through SFLA. The filtered signal can be obtained by applying the adaptive Morlet wavelet filter, and the impulse features can be well highlighted. Finally, the filtered signal is analyzed by the envelope spectrum to extract the fault frequencies of the ball bearings. Experimental results indicate that the proposed method can successfully detect the periodic impact features from the low signal-to-noise ratio(SNR)signal. Furthermore, in the processing of the early fault vibration signals of the ball bearings, the proposed method can be adopted to obtain the impulse feature frequencies effectively, which is used to diagnose the early fault of ball bearings.

参考文献/References:

[1] 钟秉林,黄仁,贾民平.机械故障诊断学[M].北京:机械工业出版社,2013.
[2] Bozchalooi I S, Liang M. A joint resonance frequency estimation and in-band noise reduction method for enhancing the detectability of bearing fault signals[J]. Mechanical Systems and Signal Processing, 2008, 22(4): 915-933.
[3] Qiu H, Lee J, Lin J, et al. Wavelet filter-based weak signature detection method and its application on rolling element bearing prognostics[J]. Journal of Sound and Vibration, 2006, 289(4/5): 1066-1090. DOI:10.1016/j.jsv.2005.03.007.
[4] Wang D, Guo W, Wang X J. A joint sparse wavelet coefficient extraction and adaptive noise reduction method in recovery of weak bearing fault features from a multi-component signal mixture[J]. Applied Soft Computing, 2013, 13(10): 4097-4104. DOI:10.1016/j.asoc.2013.05.015.
[5] Zhang Y X, Randall R B. Rolling element bearing fault diagnosis based on the combination of genetic algorithms and fast kurtogram[J]. Mechanical Systems and Signal Processing, 2009, 23(5): 1509-1517. DOI:10.1016/j.ymssp.2009.02.003.
[6] 胡爱军,唐贵基,安连锁.基于数学形态学的旋转机械振动信号降噪方法[J].机械工程学报,2006,42(4):127-130.
  Hu Aijun, Tang Guiji, An Liansuo. De-noising technique for virbation signals of rotating machinery based on mathematical morphogy filter[J]. Journal of Mechanical Engineering, 2006, 42(4): 127-130.(in Chinese)
[7] Eusuff M, Lansey K. Optimization of water distribution network design using the shuffled frog leaping algorithm[J]. American Society of Civil Engineers, 2003, 129(3): 210-225.
[8] Eusuff M, Lansey K, Pasha F. Shuffled frog-leaping algorithm: A memetic meta-heuristic for discrete optimization[J]. Engineering Optimization, 2006, 38(2): 129-154. DOI:10.1080/03052150500384759.
[9] Antoni J. Fast computation of the kurtogram for the detection of transient faults[J]. Mechanical Systems and Signal Processing, 2007, 21(1): 108-124. DOI:10.1016/j.ymssp.2005.12.002.
[10] 胡世杰,钱宇宁,严如强.基于概率密度空间划分的符号化时间序列分析及其在异常诊断中的应用[J].振动工程学报,2014,27(5):780-784. DOI:10.3969/j.issn.1004-4523.2014.05.019.
  Hu Shijie, Qian Yuning, Yan Ruqiang. Anomaly detection using symbolic time series analysis based on probability density[J]. Journal of Vibration Engineering, 2014, 27(5): 780-784. DOI:10.3969/j.issn.1004-4523.2014.05.019.(in Chinese)

相似文献/References:

[1]宋永江,夏良正,杨世周.多直线全局运动估计及其在图像稳定中的应用[J].东南大学学报(自然科学版),2002,32(2):211.[doi:10.3969/j.issn.1001-0505.2002.02.014]
 Song Yongjiang,Xia Liangzheng,Yang Shizhou.Global motion estimation using multi-line feature for image stabilization application[J].Journal of Southeast University (Natural Science Edition),2002,32(3):211.[doi:10.3969/j.issn.1001-0505.2002.02.014]
[2]杨期鹤,栗华.被动声纳信号分类特征提取的研究[J].东南大学学报(自然科学版),1999,29(6):16.[doi:10.3969/j.issn.1001-0505.1999.06.004]
 Yang Qihe,Li Hua.Feature Extraction for Passive Sonar Signal Classfication[J].Journal of Southeast University (Natural Science Edition),1999,29(3):16.[doi:10.3969/j.issn.1001-0505.1999.06.004]
[3]杨仁桓,宋爱国,徐宝国.基于谐波小波包变换的脑电波基本节律分析[J].东南大学学报(自然科学版),2008,38(6):996.[doi:10.3969/j.issn.1001-0505.2008.06.012]
 Yang Renhuan,Song Aiguo,Xu Baoguo.Analysis of EEG basic rhythms based on discrete harmonic wavelet packet transform[J].Journal of Southeast University (Natural Science Edition),2008,38(3):996.[doi:10.3969/j.issn.1001-0505.2008.06.012]
[4]杨杰,李爱群,缪长青.大跨斜拉桥动力特性的主元特征提取[J].东南大学学报(自然科学版),2006,36(4):613.[doi:10.3969/j.issn.1001-0505.2006.04.025]
 Yang Jie,Li Aiqun,Miao Changqing.Principal component feature extraction of dynamic characters in long span cable-stayed bridge[J].Journal of Southeast University (Natural Science Edition),2006,36(3):613.[doi:10.3969/j.issn.1001-0505.2006.04.025]
[5]杨欣,姜斌,周大可.基于退化模型和邻域嵌套的彩色图像超分辨率自适应重建[J].东南大学学报(自然科学版),2011,41(6):1193.[doi:10.3969/j.issn.1001-0505.2011.06.013]
 Yang Xin,Jiang Bin,Zhou Dake.Degradation model and neighbor embedding based color image adaptive super-resolution reconstruction[J].Journal of Southeast University (Natural Science Edition),2011,41(3):1193.[doi:10.3969/j.issn.1001-0505.2011.06.013]
[6]张朝晖,黄惟一.振动波形的分形判别及特征提取[J].东南大学学报(自然科学版),1999,29(4):26.[doi:10.3969/j.issn.1001-0505.1999.04.006]
 Zhang Zhaohui,Huang Weiyi.Fractal Determination and Feature Extraction from Vibration Waveforms[J].Journal of Southeast University (Natural Science Edition),1999,29(3):26.[doi:10.3969/j.issn.1001-0505.1999.04.006]
[7]陈向东,高翔,陆佶人.基于相似序列重复度的舰船辐射噪声时域特性的研究[J].东南大学学报(自然科学版),1998,28(6):17.[doi:10.3969/j.issn.1001-0505.1998.06.004]
 Chen Xiangdong,Gao Xiang,Lu Jiren.Time Domain Characteristic Study of Ship Radiated Noise Based on the Similar Sequence Repeatability[J].Journal of Southeast University (Natural Science Edition),1998,28(3):17.[doi:10.3969/j.issn.1001-0505.1998.06.004]
[8]杨欣,费树岷,周大可,等.基于分类预测器及退化模型的图像超分辨率快速重建[J].东南大学学报(自然科学版),2013,43(1):35.[doi:10.3969/j.issn.1001-0505.2013.01.007]
 Yang Xin,Fei Shumin,Zhou Dake,et al.Image fast super-resolution reconstruction based on class predictor and degradation model[J].Journal of Southeast University (Natural Science Edition),2013,43(3):35.[doi:10.3969/j.issn.1001-0505.2013.01.007]
[9]赵君爱,贾民平.工件表面微小缺陷的检测与识别方法[J].东南大学学报(自然科学版),2014,44(4):735.[doi:10.3969/j.issn.1001-0505.2014.04.010]
 Zhao Junai,Jia Minping.Detection and recognition method of small defects in workpiece surface[J].Journal of Southeast University (Natural Science Edition),2014,44(3):735.[doi:10.3969/j.issn.1001-0505.2014.04.010]
[10]髙敬阳,管瑞.基于AdaBoost的基因组缺失变异综合检测策略[J].东南大学学报(自然科学版),2014,44(5):924.[doi:10.3969/j.issn.1001-0505.2014.05.009]
 Gao Jingyang,Guan Rui.Integrated AdaBoost-based strategy for detection of genomic deletions[J].Journal of Southeast University (Natural Science Edition),2014,44(3):924.[doi:10.3969/j.issn.1001-0505.2014.05.009]

备注/Memo

备注/Memo:
收稿日期: 2015-09-26.
作者简介: 张菀(1989—),女,博士生;贾民平(联系人),男,博士,教授,博士生导师,mpjia@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(51075070)、高等学校博士学科点专项科研基金资助项目(20130092110003).
引用本文: 张菀,贾民平,朱林.一种自适应Morlet小波滤波方法及其在滚动轴承早期故障特征提取中的应用[J].东南大学学报(自然科学版),2016,46(3):457-463. DOI:10.3969/j.issn.1001-0505.2016.03.001.
更新日期/Last Update: 2016-05-20