[1]陈怀成,钱春香,任立夫.基于微生物矿化技术的水泥基材料早期裂缝自修复[J].东南大学学报(自然科学版),2016,46(3):606-611.[doi:10.3969/j.issn.1001-0505.2016.03.025]
 Chen Huaicheng,Qian Chunxiang,Ren Lifu.Self-healing of early age cracks in cement-based materials based on mineralization of microorganism[J].Journal of Southeast University (Natural Science Edition),2016,46(3):606-611.[doi:10.3969/j.issn.1001-0505.2016.03.025]
点击复制

基于微生物矿化技术的水泥基材料早期裂缝自修复()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
46
期数:
2016年第3期
页码:
606-611
栏目:
材料科学与工程
出版日期:
2016-05-20

文章信息/Info

Title:
Self-healing of early age cracks in cement-based materials based on mineralization of microorganism
作者:
陈怀成钱春香任立夫
东南大学材料科学与工程学院, 南京 211189; 东南大学绿色建材技术研究所, 南京 211189
Author(s):
Chen Huaicheng Qian Chunxiang Ren Lifu
School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
Research Institute of Green Construction Materials, Southeast University, Nanjing 211189, China
关键词:
微生物 水泥基材料 早龄期 自修复
Keywords:
microorganism cement-based material early age self-healing
分类号:
TU528.1
DOI:
10.3969/j.issn.1001-0505.2016.03.025
摘要:
为了提高水泥基材料早期裂缝的自修复效果,采用了一种具有矿化作用的碳酸酐酶微生物.利用渗水法和图像处理技术研究了该微生物修复剂对不同裂缝宽度、不同开裂龄期下水泥净浆裂缝的修复情况.同时通过XRD,SEM和EDS技术对裂缝沉积物进行成分分析, 并结合Photoshop软件研究了裂缝处矿化CaCO3的沉积量.研究结果表明:开裂龄期为7 d时,宽度在0.5 mm以下的裂缝很快修复完全,0.5~0.8 mm的裂缝修复受到一定限制,0.8 mm以上的裂缝较难修复完全;开裂龄期为7 d时,该自修复剂具有良好的修复效果,但开裂龄期越长,越难以修复;通过XRD分析确定了产物为方解石型CaCO3;Photoshop软件中标尺工具测得的裂缝表面CaCO3的沉积深度随裂缝宽度的增大而减小.
Abstract:
To improve the self-repairing effect of early age cracks in cement-based materials, one type of microorganism which can produce carbonic anhydrase is adopted. The method of water seepage and image processing technology are used to characterize the crack healing efficiency at different crack widths and different cracking ages of cement paste. The mineral composition of deposit sediment in cracks is analyzed by ways of X-ray diffraction(XRD), scanning electron microscope(SEM)and energy dispersion spectrum(EDS). The CaCO3 precipitated depth in the cracks is also studied by the Photoshop. The experimental results indicate that cracks below 0.5 mm was almost completely closed at early age of 7 d, and the repair ability of microbial self-healing agent was limited for cracks with width between 0.5 and 0.8 mm, and cracks with width up to 0.8 mm was difficult to be repaired. The self-healing agent showed a good repair effect at early age of 7 d, and the longer the cracking age, the more difficult to repair. XRD analysis shows that the precipitant in cracks was calcite calcium carbonat. The depositing depth of CaCO3 in cracks measured by the standard tools of Photoshop decreased with the increase of crack width.

参考文献/References:

[1] Jacobsen S, Sellevold E J. Self healing of high strength concrete after deterioration by freeze/thaw[J]. Cement and Concrete Research, 1996, 26(1): 55-62. DOI:10.1016/0008-8846(95)00179-4.
[2] Granger S, Loukili A, Pijaudier-Cabot G, et al. Experimental characterization of the self-healing of cracks in an ultra high performance cementitious material: Mechanical tests and acoustic emission analysis[J]. Cement and Concrete Research, 2007, 37(4): 519-527. DOI:10.1016/j.cemconres.2006.12.005.
[3] Huang H, Ye G. Simulation of self-healing by further hydration in cementitious materials[J]. Cement and Concrete Composites, 2012, 34(4): 460-467. DOI:10.1016/j.cemconcomp.2012.01.003.
[4] Wang J Y, Soens H, Verstraete W, et al. Self-healing concrete by use of microencapsulated bacterial spores[J]. Cement and Concrete Research, 2014, 56: 139-152. DOI:10.1016/j.cemconres.2013.11.009.
[5] 匡亚川,欧进萍.内置纤维胶液管钢筋混凝土梁裂缝自愈合行为试验和分析[J]. 土木工程学报, 2005, 38(4):53-59. DOI:10.3321/j.issn:1000-131X.2005.04.009.
  Kuang Yachuan, Ou Jinping. Experiments and analyses of the self-healing of cracks in reinforced concrete beams with embedded fibers filled with adhesive[J]. China Civil Engineering Journal, 2005, 38(4): 53-59. DOI:10.3321/j.issn:1000-131X.2005.04.009.(in Chinese)
[6] Li W, Jiang Z, Yang Z, et al. Self-healing efficiency of cementitious materials containing microcapsules filled with healing adhesive: Mechanical restoration and healing process monitored by water absorption[J]. PLoS ONE, 2013, 8(11): e81616. DOI:10.1371/journal.pone.0081616.
[7] 王立军,毛晨曦,董金芝.安装形状记忆合金阻尼器的剪力墙结构抗震性能分析[J].世界地震工程,2011,27(3):101-107.
  Wang Lijun, Mao Chenxi, Dong Jinzhi. Seismic performance of shear wall structure with shape memory alloy dampers in coupling beams[J]. World Earthquake Engineering, 2011, 27(3): 101-107.(in Chinese)
[8] Ahn T H, Kishi T. Crack self-healing behavior of cementitious composites incorporating various mineral admixtures[J]. Journal of Advanced Concrete Technology, 2010, 8(2): 171-186. DOI:10.3151/jact.8.171.
[9] 任立夫,钱春香.碳酸酐酶微生物沉积碳酸钙修复水泥基材料表面裂缝[J].硅酸盐学报,2014,42(11):1389-1395. DOI:10.7521/j.issn.0454-5648.2014.11.07.
  Ren Lifu, Qian Chunxiang. Restoration of cracks on surface of cement-based materials by carbonic anhydrase microbiologically precipitation calcium carbonate[J]. Journal of the Chinese Ceramic Society, 2014, 42(11): 1389-1395. DOI:10.7521/j.issn.0454-5648.2014.11.07.(in Chinese)
[10] 王瑞兴,钱春香.琼脂固载微生物矿化修复水泥基材料表面缺陷[J].建筑材料学报,2013,16(6):942-948. DOI:10.3969/j.issn.1007-9629.2013.06.004.
  Wang Ruixing, Qian Chunxiang. Restoration of defects on cement-based materials surface by bacteria immobilized in agar[J]. Journal of Building Materials, 2013, 16(6): 942-948. DOI:10.3969/j.issn.1007-9629.2013.06.004.(in Chinese)
[11] Jonkers H M, Thijssen A, Muyzer G, et al. Application of bacteria as self-healing agent for the development of sustainable concrete[J]. Ecological Engineering, 2010, 36(2): 230-235. DOI:10.1016/j.ecoleng.2008.12.036.
[12] Wang J, van Tittelboom K, de Belie N, et al. Use of silica gel or polyurethane immobilized bacteria for self-healing concrete[J]. Construction and Building Materials, 2012, 26(1): 532-540. DOI:10.1016/j.conbuildmat.2011.06.054.
[13] Luo M, Qian C X, Li R Y. Factors affecting crack repairing capacity of bacteria-based self-healing concrete[J]. Construction and Building Materials, 2015, 87: 1-7. DOI:10.1016/j.conbuildmat.2015.03.117.
[14] Savard M. The characterization of cemented carbides by automated image analysis[J]. JOM, 2008, 60(4): 23-28. DOI: 10.1007/s11837-008-0043-x.

相似文献/References:

[1]李华,孙伟,左晓宝.基于Mapping图像分析的硫酸钠侵蚀水泥基材料中硫元素分布规律[J].东南大学学报(自然科学版),2012,42(4):766.[doi:10.3969/j.issn.1001-0505.2012.04.036]
 Li Hua,Sun Wei,Zuo Xiaobao.Study on sulfur distribution in cement-based materials subjected to external sulfate attack based on Mapping image analysis[J].Journal of Southeast University (Natural Science Edition),2012,42(3):766.[doi:10.3969/j.issn.1001-0505.2012.04.036]
[2]刘加平,李华,田倩,等.基于薄层毛细渗透技术的水泥和矿物掺合料动态接触角测定[J].东南大学学报(自然科学版),2013,43(5):1074.[doi:10.3969/j.issn.1001-0505.2013.05.029]
 Liu Jiaping,Li Hua,Tian Qian,et al.Determination of dynamic contact angles of cement and mineral admixtures based on thin-layer wicking technique[J].Journal of Southeast University (Natural Science Edition),2013,43(3):1074.[doi:10.3969/j.issn.1001-0505.2013.05.029]
[3]陆兆文,钱春香,许燕波,等.不同污染条件下微生物矿化固结Zn2+的作用及机理[J].东南大学学报(自然科学版),2013,43(2):365.[doi:10.3969/j.issn.1001-0505.2013.02.026]
 Lu Zhaowen,Qian Chunxiang,Xu Yanbo,et al.Function and mechanism of microbial mineralization consolidation of Zn2+ under different pollution conditions[J].Journal of Southeast University (Natural Science Edition),2013,43(3):365.[doi:10.3969/j.issn.1001-0505.2013.02.026]
[4]黄谦,王冲,杨长辉,等.电脉冲作用下水泥基材料硫酸盐侵蚀的影响因素[J].东南大学学报(自然科学版),2014,44(5):1041.[doi:10.3969/j.issn.1001-0505.2014.05.029]
 Huang Qian,Wang Chong,Yang Changhui,et al.Influence factors of sulfate attack on cement-based materials subjected to electrical pulse[J].Journal of Southeast University (Natural Science Edition),2014,44(3):1041.[doi:10.3969/j.issn.1001-0505.2014.05.029]

备注/Memo

备注/Memo:
收稿日期: 2015-09-30.
作者简介: 陈怀成(1986—),男,博士生;钱春香(联系人),女,博士,教授,博士生导师,cxqian@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(51178104)、江苏省普通高校研究生科研创新计划资助项目(KYLX_0111)、江苏省“333高层次人才培养工程”资助项目.
引用本文: 陈怀成,钱春香,任立夫.基于微生物矿化技术的水泥基材料早期裂缝自修复[J].东南大学学报(自然科学版),2016,46(3):606-611. DOI:10.3969/j.issn.1001-0505.2016.03.025.
更新日期/Last Update: 2016-05-20