[1]沙菁?,等.LiCl溶液中基于固态纳米孔的DNA检测[J].东南大学学报(自然科学版),2016,46(5):982-986.[doi:10.3969/j.issn.1001-0505.2016.05.014]
 Sha Jingjie,Shi Hongjiao,Xu Bing.Detection of DNA based on solid-state nanopore in LiCl solution[J].Journal of Southeast University (Natural Science Edition),2016,46(5):982-986.[doi:10.3969/j.issn.1001-0505.2016.05.014]
点击复制

LiCl溶液中基于固态纳米孔的DNA检测()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
46
期数:
2016年第5期
页码:
982-986
栏目:
机械工程
出版日期:
2016-09-20

文章信息/Info

Title:
Detection of DNA based on solid-state nanopore in LiCl solution
作者:
沙菁?石鸿佼徐冰
东南大学江苏省微纳生物医疗器械设计与制造重点实验室, 南京 211189; 东南大学机械工程学院, 南京 211189
Author(s):
Sha Jingjie Shi Hongjiao Xu Bing
Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
School of Mechanical Engineering, Southeast University, Nanjing 211189, China
关键词:
纳米孔 LiCl溶液 DNA 阻塞离子电流 过孔时间
Keywords:
nanopore LiCl solution DNA ionic blockage current dwell time
分类号:
TH113;Q78
DOI:
10.3969/j.issn.1001-0505.2016.05.014
摘要:
采用阳离子体积较小的LiCl溶液作为缓冲液,研究DNA在不同浓度下通过固态纳米孔时的行为特征,以探究DNA的过孔机理.实验结果表明,当LiCl溶液浓度从0.1 mol/L变化到1.0 mol/L时,由DNA过孔所引起的相对阻塞离子电流信号比值从0.014 42降低至0.002 79,而DNA完全通过纳米孔所需时间从0.30 ms增加至1.87 ms.对比1 mol/L KCl,NaCl,LiCl三种溶液中DNA的过孔结果发现,在LiCl溶液中DNA的过孔时间分别为KCl,NaCl溶液中的6.2和5.3倍,说明LiCl溶液能够有效降低DNA的过孔速度.此外,实验发现LiCl溶液中DNA主要以线性非折叠和折叠2种形态过孔. 因此,增加LiCl溶液浓度可延长DNA的过孔时间,但会使相对阻塞离子电流信号幅值降低.
Abstract:
The behaviors of DNA translocation through solid-state nanopores in the solutions with different concentrations are studied by using the LiCl solution with small volume of cations as the buffer solution,and the mechanism of DNA translocation is investigated.The results show that when the concentration of the LiCl solution increases from 0.1 to 1.0 mol/L,the relative ionic blockage current ratio caused by DNA passing though pores declines from 0.014 42 to 0.002 79 and the time of DNA passing through the pores increases from 0.30 to 1.87 ms.The comparison results for 1 mol/L KCl,NaCl and LiCl solution demonstrate that the dwell time of DNA in the LiCl solution is 6.2 and 5.3 times of those in KCl and NaCl solutions,respectively,indicating that the dwell velocity can be effectively reduced by the LiCl solution.Moreover,DNA is driven through nanopores in unfolded and folded states in the LiCl solution.Therefore,the increase of the LiCl concentration can prolong the dwell time of DNA,but reduce the amplitude of the relative ionic blockage current.

参考文献/References:

[1] Kasianowicz J J, Brandin E, Branton D, et al. Characterization of individual polynucleotide molecules using a membrane channel[J]. Proc Natl Acad Sci USA, 1996, 93(24):13770-13773. DOI:10. 1073/pnas. 93. 24. 13770.
[2] Storm A J, Storm C, Chen J, et al. Fast DNA translocation through a solid-state nanopore[J]. Nano Lett, 2005, 5(7):1193-1197. DOI:10. 1021/nl048030d.
[3] Keyser U F, Van D, Dekker C, et al. Optical tweezers for force measurements on DNA in nanopores[J]. Review of Scientific Instruments, 2006, 77(10):105105.
[4] Meller A, Nivon L, Branton D. Voltage-driven DNA translocations through a nanopore[J]. Phys Rev Lett, 2001, 86(15):3435-3438. DOI:10. 1103/PhysRevLett. 86. 3435.
[5] Sha J, Ni Z, Liu L, et al. A novel method of fabricating a nanopore based on a glass tube for single-molecule detection[J]. Nanotechnology, 2011, 22(17):175304. DOI:10. 1088/0957-4484/22/17/175304.
[6] Kowalczyk S W, Wells D B, Aksimentiev A, et al. Slowing down DNA translocation through a nanopore in lithium chloride[J]. Nano Lett, 2012, 12(2): 1038-1044.
[7] Zhang Y, Wu G, Ma J, et al. Temperature effect on translocation speed and capture rate of nanopore-based DNA detection[J]. Sci China Technol Sci, 2014, 58(3):519-525. DOI:10. 1007/s11431-014-5674-2.
[8] Smeets R M, Keyser U F, Krapf D, et al. Salt dependence of ion transport and DNA translocation through solid-state nanopores[J]. Nano Lett, 2006, 6(1):89-95. DOI:10. 1021/nl052107w.
[9] He Y, Tsutsui M, Scheicher R H, et al. Mechanism of how salt-gradient-induced charges affect the translocation of DNA molecules through a nanopore[J]. Biophys J, 2013, 105(3):776-782. DOI:10. 1016/j. bpj. 2013. 05. 065.
[10] Wanunu M, Morrison W, Rabin Y, et al. Electrostatic focusing of unlabelled DNA into nanoscale pores using a salt gradient[J]. Nat Nanotechnol, 2010, 5(2):160-165. DOI:10. 1038/nnano. 2009. 379.
[11] Kowalczyk S W, Grosberg A Y, Rabin Y, et al. Modeling the conductance and DNA blockade of solid-state nanopores[J]. Nanotechnology, 2011, 22(31):315101. DOI:10. 1088/0957-4484/22/31/315101.
[12] Li J, Fologea D, Rollings R, et al. Characterization of protein unfolding with solid-state nanopores[J]. Protein and Peptide Letters, 2014, 21(3): 256-265.
[13] Ling D Y, Ling X S. On the distribution of DNA translocation times in solid-state nanopores: An analysis using Schrodinger’s first-passage-time theory[J]. Journal of Physics-Condensed Matter, 2013, 25:37510237-1-37510237-6.
[14] Meller A, Branton D. Single molecule measurements of DNA transport through a nanopore[J]. Electrophoresis, 2002, 23(16): 2583-2591.
[15] Fologea D, Uplinger J, Thomas B, et al. Slowing DNA translocation in a solid-state nanopore[J]. Nano Lett, 2005, 5(9): 1734-1737.

备注/Memo

备注/Memo:
收稿日期: 2016-02-16.
作者简介: 沙菁?(1980—),女,博士,副教授,major212@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(51375092,51675101)、东南大学优秀青年教师教学科研资助项目(2242015R30002).
引用本文: 沙菁?,石鸿佼,徐冰.LiCl溶液中基于固态纳米孔的DNA检测[J].东南大学学报(自然科学版),2016,46(5):982-986. DOI:10.3969/j.issn.1001-0505.2016.05.014.
更新日期/Last Update: 2016-09-20