[1]刘晨晗,董赟,陈伟宇,等.多层石墨烯纳米带的法向热传导[J].东南大学学报(自然科学版),2016,46(5):987-991.[doi:10.3969/j.issn.1001-0505.2016.05.015]
 Liu Chenhan,Dong Yun,Chen Weiyu,et al.Cross-plane thermal transport in multilayer graphene nanobundles[J].Journal of Southeast University (Natural Science Edition),2016,46(5):987-991.[doi:10.3969/j.issn.1001-0505.2016.05.015]
点击复制

多层石墨烯纳米带的法向热传导()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
46
期数:
2016年第5期
页码:
987-991
栏目:
数学、物理学、力学
出版日期:
2016-09-20

文章信息/Info

Title:
Cross-plane thermal transport in multilayer graphene nanobundles
作者:
刘晨晗12董赟123陈伟宇12陶毅12蔡爽12 魏志勇12毕可东12杨决宽12陈云飞12
1东南大学机械工程学院, 南京 211189; 2东南大学江苏省微纳生物医疗器械设计与制造重点实验室, 南京 211189; 3兰州理工大学机电工程学院, 兰州 730050
Author(s):
Liu Chenhan12 Dong Yun123 Chen Weiyu12 Tao Yi12 Cai Shuang12Wei Zhiyong12 Bi Kedong12 Yang Juekuan12 Chen Yunfei12
1School of Mechanical Engineering, Southeast University, Nanjing 211189, China
2Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
3School of Mechanical and Electronical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
关键词:
原子格林函数法 多层石墨烯纳米带 声子 透射函数 热导
Keywords:
atomic Green’s function method multilayer graphene nanobundles phonon transmission function thermal conductance
分类号:
O469
DOI:
10.3969/j.issn.1001-0505.2016.05.015
摘要:
为了探讨纳米带横截面积和制造过程中可能引起的凸起结构对多层石墨烯纳米带法向热传导的影响,采用了能够反映纳米尺度下声子波属性和量子效应的原子格林函数方法来进行计算研究.结果表明,石墨烯纳米带单位面积法向热导与横截面积呈负相关,并最终趋近于体态值100 MW/(m2·K).造成此现象的原因是随着横截面积的增大,增加的声子支主要位于高频区域,而相对于低频声子,高频声子在界面处的透射值较小.另外,声子局域态密度和透射函数的计算结果表明,凸起会改变热流的传递方向和降低热流传递的效率,从而减小法向热导.
Abstract:
In order to explore the effects of cross area and junction, which may be caused during the manufacturing process, on the cross-plane thermal transport of multilayer graphene nanobundles, a calculation research is conducted by using the atomic Green’s function method, which can describe the phonon wave property and quantum effects on the nanoscale. The results show that the thermal conductance per unit area of multilayer graphene nanobundles is negatively dependent on the cross area and finally converges to the bulk value 100 MW/(m2·K). The reason is that the most increased parts of phonons are located in high-frequency region as the cross area increasing, while high-frequency phonons have lower transmission value at the interface than low-frequency phonons. In addition, the results of phonon local density of states and transmission function show that the junction can change the heat conduction direction and reduce heat transport efficiency, thus decreasing the cross-plane thermal conductance.

参考文献/References:

[1] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669. DOI:10.1126/science.1102896.
[2] Balandin A A, Ghosh S, Bao W, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters, 2008, 8(3): 902-907. DOI:10.1021/nl0731872.
[3] Yang J, Yang Y, Waltermire S W, et al. Measurement of the intrinsic thermal conductivity of a multiwalled carbon nanotube and its contact thermal resistance with the substrate[J]. Small, 2011, 7(16): 2334-2340. DOI:10.1002/smll.201100429.
[4] Hu L, Desai T, Keblinski P. Thermal transport in graphene-based nanocomposite[J]. Journal of Applied Physics, 2011, 110(3): 033517. DOI:10.1063/1.3610386.
[5] Konatham D, Papavassiliou D V, Striolo A. Thermal boundary resistance at the graphene-graphene interface estimated by molecular dynamics simulations[J]. Chemical Physics Letters, 2012, 527: 47-50. DOI:10.1016/j.cplett.2012.01.007.
[6] Jang W, Chen Z, Bao W, et al. Thickness-dependent thermal conductivity of encased graphene and ultrathin graphite[J]. Nano Letters, 2010, 10(10): 3909-3913. DOI:10.1021/nl101613u.
[7] Seol J H, Jo I, Moore A L, et al. Two-dimensional phonon transport in supported graphene[J]. Science, 2010, 328(5975): 213-216. DOI:10.1126/science.1184014.
[8] Tian L, Anilkumar P, Cao L, et al. Graphene oxides dispersing and hosting graphene sheets for unique nanocomposite materials[J]. ACS Nano, 2011, 5(4): 3052-3058. DOI:10.1021/nn200162z.
[9] Liu Y, Huang J, Yang B, et al. Duality of the interfacial thermal conductance in graphene-based nanocomposites[J]. Carbon, 2014, 75: 169-177. DOI:10.1016/j.carbon.2014.03.050.
[10] Liu Y, Hu C, Huang J, et al. Tuning interfacial thermal conductance of graphene embedded in soft materials by vacancy defects[J]. The Journal of Chemical Physics, 2015, 142(24): 244703. DOI:10.1063/1.4922775.
[11] Chung D D L. Thermal interface materials[J]. Journal of Materials Engineering and Performance, 2001, 10(1): 56-59. DOI:10.1361/105994901770345358.
[12] Pop E. Energy dissipation and transport in nanoscale devices[J]. Nano Research, 2010, 3(3): 147-169. DOI:10.1007/s12274-010-1019-z.
[13] Rego L G C, Kirczenow G. Quantized thermal conductance of dielectric quantum wires[J]. Physical Review Letters, 1998, 81(1): 232-235. DOI:10.1103/physrevlett.81.232.
[14] Wang J S, Wang J, Lü J T. Quantum thermal transport in nanostructures[J]. The European Physical Journal B, 2008, 62(4): 381-404. DOI:10.1140/epjb/e2008-00195-8.
[15] Lindsay L, Broido D A. Erratum: Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and grapheme [Phys. Rev. B 81, 205441(2010)] [J]. Physical Review B, 2010, 82(20): 209903. DOI:10.1103/physrevb.82.209903.
[16] Girifalco L A, Hodak M, Lee R S. Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential[J]. Physical Review B, 2000, 62(19): 13104-13110. DOI:10.1103/PhysRevB.62.13104.
[17] Yang J, Shen M, Yang Y, et al. Phonon transport through point contacts between graphitic nanomaterials[J]. Physical Review Letters, 2014, 112(20): 205901. DOI:10.1103/physrevlett.112.205901.
[18] Fu Q, Yang J, Chen Y, et al. Experimental evidence of very long intrinsic phonon mean free path along the c-axis of graphite[J]. Applied Physics Letters, 2015, 106(3): 031905. DOI:10.1063/1.4906348.
[19] Liu C, Wei Z, Chen W, et al. Pressure effects on the thermal resistance of few-layer graphene[J]. Physics Letters A, 2016, 380(1): 248-254. DOI:10.1016/j.physleta.2015.09.007.
[20] Saito R, Dresselhaus G, Dresselhaus M. S. Physical properties of carbon nanotubes [M]. Imperial College Press, 1998: 37-45.

备注/Memo

备注/Memo:
收稿日期: 2016-01-26.
作者简介: 刘晨晗(1989—),男,博士生;陈云飞(联系人),男,博士,教授,博士生导师,yunfeichen@seu.edu.cn.
基金项目: 江苏省普通高校学术学位研究生创新计划资助项目(KYLX15_0058)、东南大学优秀博士学位论文培育基金资助项目(YBJJ1541)、国家自然科学基金资助项目(51665030).
引用本文: 刘晨晗,董赟,陈伟宇,等.多层石墨烯纳米带的法向热传导[J].东南大学学报(自然科学版),2016,46(5):987-991. DOI:10.3969/j.issn.1001-0505.2016.05.015.
更新日期/Last Update: 2016-09-20