[1]徐国英,陈彩,张小松,等.聚光条件下纳米流体非均匀集热特性分析[J].东南大学学报(自然科学版),2016,46(6):1221-1226.[doi:10.3969/j.issn.1001-0505.2016.06.019]
 Xu Guoying,Chen Cai,Zhang Xiaosong,et al.Analysis on solar collection characteristics of nanofluid under non-uniform concentrated radiation[J].Journal of Southeast University (Natural Science Edition),2016,46(6):1221-1226.[doi:10.3969/j.issn.1001-0505.2016.06.019]
点击复制

聚光条件下纳米流体非均匀集热特性分析()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
46
期数:
2016年第6期
页码:
1221-1226
栏目:
能源与动力工程
出版日期:
2016-11-20

文章信息/Info

Title:
Analysis on solar collection characteristics of nanofluid under non-uniform concentrated radiation
作者:
徐国英陈彩张小松陈伟
东南大学能源与环境学院, 南京 210096
Author(s):
Xu Guoying Chen Cai Zhang Xiaosong Chen Wei
School of Energy and Environment, Southeast University, Nanjing 210096, China
关键词:
纳米流体 太阳能集热器 聚光 集热效率 温度分布
Keywords:
nanofluid solar collector solar concentration collection efficiency temperature distribution
分类号:
TK513
DOI:
10.3969/j.issn.1001-0505.2016.06.019
摘要:
研究了一种采用纳米流体直接吸收太阳辐射的聚光型中温集热器.建立了纳米流体集热过程能量传递和聚光器辐射热流分布的数学模型,测试了添加不同质量分数纳米颗粒的CuO-导热油纳米流体的吸光系数,进而对非均匀聚光条件下纳米流体直接吸收式集热器(NDASC)特性进行了CFD模拟.分析了40~150 ℃范围内不同纳米颗粒质量分数对NDASC管内温度分布和集热效率的影响规律.结果表明:NDASC集热管周向温差明显低于传统间接吸收式集热器,但随着纳米颗粒质量分数的提高,纳米流体吸光系数增大,管内温度分布的不均匀性加剧;集热效率则随纳米颗粒质量分数的增大呈现先升后降的趋势,得出了集热性能最佳的纳米颗粒质量分数范围.
Abstract:
A nanofluid-based direct absorption solar collector(NDASC)operated with a parabolic trough concentrator was studied. The radiation transmission and the heat transfer mechanism within the nanofluid were mathematically modeled, and the spectral absorption properties of CuO/oil nanofluid with different mass fractions of CuO nanoparticles were investigated. Then, performance characteristics of the NDASC operated under non-uniform concentrated solar radiation flux were numerically simulated. The influences of mass fraction of nanoparticles on the NDASC temperature distribution of NDASC and collection efficiency were analyzed at temperature from 40 to 150 ℃. Results show that the temperature difference on the inner tube wall of NDASC is much lower than that of a conventional solar collector employing coated tube. With the increase of the mass fraction of nanoparticles, the absorption coefficient of nanofluid increases, and the temperature distribution in the NDASC becomes more non-uniform,but the collection efficiency first increases and then decreases. Furthermore, the optimum mass fraction of the nanofluid is obtained to achieve the highest collection efficiency.

参考文献/References:

[1] Zhu Q Z, Cui Y, Mu L J, et al. Characterization of thermal radiative properties of nanofluids for selective absorption of solar radiation[J]. International Journal of Thermophysics, 2013, 34(12):2307-2321. DOI:10.1007/s10765-012-1208-y.
[2] 方晓鹏. 纳米流体热质传递机理及光学特性研究[D]. 南京:南京理工大学能源与动力工程学院, 2013.
[3] Xuan Y M, Li Q. Investigation on convective heat transfer and flow features of nanofluids[J]. Journal of Heat Transfer, 2003, 125(1): 151-155. DOI:10.1115/1.1532008.
[4] Saidur R, Meng T C, Said Z, et al. Evaluation of the effect of nanofluid-based absorbers on direct solar collector [J]. International Journal of Heat and Mass Transfer, 2012, 55(21): 5899-5907. DOI:10.1016/j.ijheatmasstransfer.2012.05.087.
[5] Ladjevardi S M, Asnaghi A, Izadkhast P S, et al. Applicability of graphite nanofluids in direct solar energy absorption [J]. Solar Energy, 2013, 94: 327-334. DOI:10.1016/j.solener.2013.05.012.
[6] Vakili M, Hosseinalipour S M, Delfani S, et al. Photothermal properties of graphene nanoplatelets nanofluid for low-temperature direct absorption solar collectors[J]. Solar Energy Materials & Solar Cells, 2016, 152:187-191. DOI:10.1016/j.solmat.2016.01.038.
[7] 毛凌波,张仁元,柯秀芳,等. 纳米流体太阳集热器的光热性能研究[J]. 太阳能学报,2009,30(12):1647-1652.
  Mao Lingbo, Zhang Renyuan, Ke Xiufang, et al. Photo-thermal properties of nanofluid-based solar collector[J]. Acta Energiae Solaris Sinica, 2009, 30(12):1647-1652.(in Chinese)
[8] 潘志东,Nkurikiyimfura I,周明辉,等. 基于磁性纳米流体的直接吸收式太阳能集热器的集热性能[J]. 硅酸盐学报,2014,42(4):522-527.
  Pan Zhidong, Nkurikiyimfura I, Zhou Minghui, et al. Thermal performance of simulated direct absorbing solar collector with magnetic nanofluid[J]. Journal of the Chinese Ceramic Society, 2014,42(4):522-527.(in Chinese)
[9] Sani E, Barison S, Pagura C, et al. Carbon nanohorns-based nanofluids as direct sunlight absorbers [J]. Optics Express, 2010, 18(5): 5179-5187. DOI:10.1364/oe.18.005179.
[10] Luo Z, Wang C, Wei W, et al. Performance improvement of a nanofluid solar collector based on direct absorption collection(DAC)concepts [J]. International Journal of Heat and Mass Transfer, 2014, 75(8): 262-271. DOI:10.1016/j.ijheatmasstransfer.2014.03.072.
[11] 王文婷,朱群志,段芮,等. 基于TiN-EG纳米流体的直接吸收式太阳集热系统性能实验研究[J]. 太阳能学报,2015,36(6):1300-1305.
  Wang Wenting, Zhu Qunzhi, Duan Rui, et al. Study on performance of direct absorption solar collector system based on TiN-EG nanofluids[J]. Acta Energiae Solaris Sinica, 2015, 36(6):1300-1305.(in Chinese)
[12] 徐国英,陈伟,张小松,等. 纳米流体直接吸收式太阳能中温集热与热损分析[J]. 工程热物理学报,2015, 36(5): 960-964.
  Xu Guoying, Chen Wei, Zhang Xiaosong, et al. Performance and heat loss analysis on the direct absorption medium-temperature solar collector using oil-based nanofluid[J]. Journal of Engineering Thermophysics, 2015, 36(5): 960-964.(in Chinese)
[13] Xu G Y, Chen W, Deng S M, et al. Performance evaluation of a nanofluid-based direct absorption solar collector with parabolic trough concentrator[J]. Nanomaterials, 2015, 5(4): 2131-2147. DOI:10.3390/nano5042131.
[14] 赵赛男.纳米流体对太阳辐射的吸收特性及集热适用性研究[D]. 南京:东南大学能源与环境学院, 2016.
[15] 徐国英,李凌志,张小松,等. 太阳能集热用导热油纳米流体的稳定性及中温集热特性[J]. 流体机械,2015,43(4):57-60. DOI:10.3969/j.issn.1005-0329.2015.04.012.
  Xu Guoying, Li Lingzhi, Zhang Xiaosong, et al. Experimental study on the dispersion stability and solar heat collection performance of oil-based nanofluids[J]. Fluid Machinery, 2015, 43(4): 57-60. DOI:10.3969/j.issn.1005-0329.2015.04.012.(in Chinese)
[16] Kalogirou S A. A detailed thermal model of a parabolic trough collector receiver[J]. Energy, 2012, 48(1): 298-306. DOI:10.1016/j.energy.2012.06.023.
[17] Forristall R. Heat transfer analysis and modeling of a parabolic trough solar receiver implemented in engineering equation solver [R]. Golden, CO, USA: National Renewable Energy Laboratory, 2003.

相似文献/References:

[1]段炼,韩吉田,霍冲,等.热电制冷液冷服内纳米流体自然循环换热特性[J].东南大学学报(自然科学版),2018,48(2):220.[doi:10.3969/j.issn.1001-0505.2018.02.005]
 Duan Lian,Han Jitian,Huo Chong,et al.Natural circulation heat transfer characteristics of nanofluid in thermoelectric refrigeration liquid cooling suits[J].Journal of Southeast University (Natural Science Edition),2018,48(6):220.[doi:10.3969/j.issn.1001-0505.2018.02.005]

备注/Memo

备注/Memo:
收稿日期: 2016-06-20.
作者简介: 徐国英(1983—),女,博士,讲师,xugy@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(51676046)、“十二五”国家科技支撑计划资助项目(2014BAJ01B05-2).
引用本文: 徐国英,陈彩,张小松,等.聚光条件下纳米流体非均匀集热特性分析[J].东南大学学报(自然科学版),2016,46(6):1221-1226. DOI:10.3969/j.issn.1001-0505.2016.06.019.
更新日期/Last Update: 2016-11-20