[1]陈静云,刘佳音,孙依人,等.基于MHN复数模量模型的沥青玻璃化转变温度确定方法[J].东南大学学报(自然科学版),2016,46(6):1284-1289.[doi:10.3969/j.issn.1001-0505.2016.06.029]
 Chen Jingyun,Liu Jiayin,Sun Yiren,et al.Method for determining glass transition temperature on asphalt binders based on MHN complex modulus model[J].Journal of Southeast University (Natural Science Edition),2016,46(6):1284-1289.[doi:10.3969/j.issn.1001-0505.2016.06.029]
点击复制

基于MHN复数模量模型的沥青玻璃化转变温度确定方法()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
46
期数:
2016年第6期
页码:
1284-1289
栏目:
交通运输工程
出版日期:
2016-11-20

文章信息/Info

Title:
Method for determining glass transition temperature on asphalt binders based on MHN complex modulus model
作者:
陈静云刘佳音孙依人王维营
大连理工大学交通运输学院, 大连 116024
Author(s):
Chen Jingyun Liu Jiayin Sun Yiren Wang Weiying
School of Transportation and Logistics, Dalian University of Technology, Dalian 116024, China
关键词:
沥青 玻璃化转变温度 黏弹性 时-温等效原理 低温性能
Keywords:
asphalt binder glass transition temperature visco-elasticity time-temperature superposition principle low-temperature performance
分类号:
U414
DOI:
10.3969/j.issn.1001-0505.2016.06.029
摘要:
为了更方便地量化玻璃化转变温度,采用动态剪切流变仪测定了70#和90#基质沥青的黏弹性特征,并结合MHN复数模量主曲线模型,提出了用黏弹性参数直接计算玻璃化转变温度的方法.首先基于MHN模型,采用不同恒温条件下的动态剪切试验频率扫描数据,建立储能模量和损耗模量主曲线;然后计算损耗模量峰值位置的缩减频率,由WLF方程推导出玻璃化转变温度表达式.结果表明:MHN模型能准确地表征基质沥青的储能模量和损耗模量主曲线;由MHN模型确定的玻璃化转变温度随着参考频率的增大而升高.用MHN模型可以有效地确定沥青的玻璃化转变温度,计算值与温度扫描试验测定结果一致.
Abstract:
To conveniently quantify the glass transition temperature, the visco-elastic properties of 70# and 90# virgin asphalt binders were evaluated using dynamic shear rheometer. A method for directly calculating the glass transition temperature using visco-elastic parameters was proposed based on the MHN(modified Havriliak-Negami)complex model for describing the dynamic modulus master curve. First, the storage modulus and loss modulus master curves were constructed on the basis of the MHN model using frequency sweep data from dynamic shear tests under various isotherm conditions. Then, the reduced frequencies corresponding to the peaks of the loss modulus were calculated and the expression for glass transition temperature was deduced from WLF(Williams-Landel-Ferry)equation. The results show that MHN model can accurately characterize the storage modulus and lost modulus master curves. The glass transition temperature increase with the increase of the reference frequency.The calculated results show considerable consistency with the measured results in temperature sweep tests, and the glass transition temperatures can be effectively determined using the MHN model for asphalt binders.

参考文献/References:

[1] Lesueur D. The colloidal structure of bitumen: Consequences on the rheology and on the mechanisms of bitumen modification[J]. Advances in Colloid and Interface Science, 2009, 145(1/2): 42-82.DOI:10.1016/j.cis.2008.08.011.
[2] 何平笙.新编高聚物的结构与性能[M].北京:科学出版社,2009:160-162.
[3] Nam K, Bahia H U. Effect of binder and mixture variables on glass transition behavior of asphalt mixtures[C]//Proceedings of the Association of Asphalt Paving Technologist. Baton Rouge, LA, USA, 2004, 73: 133-148.
[4] 曹丽萍,谭忆秋,董泽蛟,等.应用玻璃化转变温度评价SBS改性沥青低温性能[J].中国公路学报,2006,19(2):1-6.DOI:10.3321/j.issn:1001-7372.2006.02.001.
  Cao Liping, Tan Yiqiu, Dong Zejiao, et al. Evaluation for low temperature performance of SBS modified asphalt using glass transition temperature[J]. China Journal of Highway and Transport, 2006, 19(2): 1-6.DOI:10.3321/j.issn:1001-7372.2006.02.001.(in Chinese)
[5] 尹应梅,张肖宁,邹桂莲.基于玻璃化转变温度的沥青混合料低温性能研究[J].华南理工大学学报(自然科学版),2010,38(10):89-93.DOI:10.3969/j.issn.1000-565X.2010.10.017.
  Yin Yingmei, Zhang Xiaoning, Zou Guilian. Investigation into low-temperature performance of asphalt mixtures based on glass transition temperature[J]. Journal of South China University of Technology(Natural Science), 2010, 38(10): 89-93.DOI:10.3969/j.issn.1000-565X.2010.10.017.(in Chinese)
[6] 张肖宁.沥青与沥青混合料的粘弹力学原理及应用[M].北京:人民交通出版社,2006:15-16.
[7] Kriz P, Stastna J, Zanzotto L. Glass transition and phase stability in asphalt binders[J]. Road Materials and Pavement Design, 2008, 9(S1): 37-65.DOI:10.1080/14680629.2008.9690158.
[8] Tan Y Q, Guo M. Study on the phase behavior of as-phalt mastic[J]. Construction and Building Materials, 2013, 47: 311-317.DOI:10.1016/j.conbuildmat.2013.05.064.
[9] Zhang Lei, Tan Yiqiu, Bahia H. Relationship between glass transition temperature and low temperature properties of oil modified binders[J]. Construction and Building Materials, 2016, 104: 92-98.DOI:10.1016/j.conbuildmat.2015.12.048.
[10] Zhao Y, Chen P, Cao D. Extension of modified Havriliak-Negami model to characterize linear viscoelastic properties of asphalt binders[J]. Journal of Materials in Civil Engineering, 2016, 28(5): 04015195.DOI:10.1061/(asce)mt.1943-5533.0001491.
[11] Zhao Y, Liu H, Bai L, et al. Characterization of linear viscoelastic behavior of asphalt concrete using complex modulus model[J]. Journal of Materials in Civil Engineering, 2013, 25(10): 1543-1548. DOI:10.1061/(asce)mt.1943-5533.0000688.
[12] Levenberg E, Shah A. Interpretation of complex modulus test results for asphalt-aggregate mixes[J]. Journal of Testing and Evaluation, 2008, 36(4): 1-9.DOI:10.1520/jte101577.
[13] Olard F, di Benedetto H. General “2S2P1D” model and relation between the linear viscoelastic behaviours of bituminous binders and mixes[J]. Road Materials and Pavement Design, 2003, 4(2): 185-224.DOI:10.1080/14680629.2003.9689946.
[14] Sun Y, Chen J, Huang B. Characterization of asphalt concrete linear viscoelastic behavior utilizing Havriliak-Negami complex modulus model[J]. Construction and Building Materials, 2015, 99: 226-234.DOI:10.1016/j.conbuildmat.2015.09.016.
[15] Zeng M, Bahia H U, Zhai H, et al. Rheological modeling of modified asphalt binders and mixtures[C]//Proceedings of the Association of Asphalt Paving Technologist. Clearwater Beach, FL, USA, 2001, 70: 403-441.
[16] Yusoff N I M. Modelling the linear viscoelastic rheological properties of bituminous binders[D]. Nottingham,UK: University of Nottingham, 2012.
[17] Airey G D. Use of black diagrams to identify inconsistencies in rheological data[J]. Road Materials and Pavement Design, 2002, 3(4): 403-424.DOI:10.1080/14680629.2002.9689933.

相似文献/References:

[1]马涛,黄晓明,张久鹏.基于材料复合理论的老化沥青再生规律[J].东南大学学报(自然科学版),2008,38(3):520.[doi:10.3969/j.issn.1001-0505.2008.03.031]
 Ma Tao,Huang Xiaoming,Zhang Jiupeng.Recycling law of aged asphalt based on composite theory of material[J].Journal of Southeast University (Natural Science Edition),2008,38(6):520.[doi:10.3969/j.issn.1001-0505.2008.03.031]
[2]陈俊,殷小晶,张倩倩,等.沥青内金属离子的水污特征及组分扩散的分子动力学模拟[J].东南大学学报(自然科学版),2017,47(4):799.[doi:10.3969/j.issn.1001-0505.2017.04.026]
 Chen Jun,Yin Xiaojing,Zhang Qianqian,et al.Water quality degradation due to metal in asphalt and molecular dynamics simulation on SARA fraction diffusion[J].Journal of Southeast University (Natural Science Edition),2017,47(6):799.[doi:10.3969/j.issn.1001-0505.2017.04.026]

备注/Memo

备注/Memo:
收稿日期: 2016-03-06.
作者简介: 陈静云(1956—),女,博士,教授,博士生导师,chenjy@dlut.edu.cn.
基金项目: 国家自然科学基金青年基金资助项目(51208080).
引用本文: 陈静云,刘佳音,孙依人,等.基于MHN复数模量模型的沥青玻璃化转变温度确定方法[J].东南大学学报(自然科学版),2016,46(6):1284-1289. DOI:10.3969/j.issn.1001-0505.2016.06.029.
更新日期/Last Update: 2016-11-20