[1]董赟,刘晨晗,段早琦,等.石墨烯的摩擦力和刚度关系的分子动力学模拟[J].东南大学学报(自然科学版),2017,47(1):28-32.[doi:10.3969/j.issn.1001-0505.2017.01.006]
 Dong Yun,Liu Chenhan,Duan Zaoqi,et al.Molecular dynamics simulations of stiffness-dependent friction of graphene[J].Journal of Southeast University (Natural Science Edition),2017,47(1):28-32.[doi:10.3969/j.issn.1001-0505.2017.01.006]
点击复制

石墨烯的摩擦力和刚度关系的分子动力学模拟()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
47
期数:
2017年第1期
页码:
28-32
栏目:
数学、物理学、力学
出版日期:
2017-01-18

文章信息/Info

Title:
Molecular dynamics simulations of stiffness-dependent friction of graphene
作者:
董赟123刘晨晗13段早琦13Gueye Birahima13陶毅13张艳13陈云飞13
1东南大学机械工程学院, 南京 211189; 2兰州理工大学机电工程学院, 兰州 730050; 3东南大学江苏省微纳生物医疗器械设计与制造重点实验室, 南京 211189
Author(s):
Dong Yun123 Liu Chenhan13 Duan Zaoqi13 Gueye Birahima13Tao Yi13 Zhang Yan13 Chen Yunfei13
1School of Mechanical Engineering, Southeast University, Nanjing 211189, China
2School of Mechanical and Electronical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
3Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
关键词:
分子动力学模拟 石墨烯 势垒高度 法向刚度
Keywords:
molecular dynamics simulations graphene energy barrier surface compliance
分类号:
O484.2
DOI:
10.3969/j.issn.1001-0505.2017.01.006
摘要:
采用分子动力学方法建立了基底支撑的多层石墨烯摩擦力模型,统计了不同层数石墨烯在法向载荷作用下的摩擦系数,确立了摩擦力随层数的变化关系;通过针尖吸附薄片所受的范德华力和石墨烯法向变形能与摩擦力的对应关系,得出了法向变形能和界面褶皱势是导致摩擦产生的直接原因,定量分析了界面势垒高度与法向刚度对摩擦力的贡献.结果表明:在不同载荷作用下,3层石墨烯的摩擦系数比1层的摩擦系数高36%、比2层的摩擦系数高40%,1~3层石墨烯的摩擦力均大于范德华力,且随着层数的增加摩擦力与范德华力差值增大;石墨烯层间以刚度串联方式连接,当法向载荷恒定时,3层石墨烯的法向变形能约为2层的1.5倍、1层的3倍,每层石墨烯的变形能对摩擦力的贡献相同,石墨烯摩擦力的产生是层间法向刚度与界面褶皱势刚度共同竞争作用的结果.
Abstract:
Based on molecular dynamics simulations,a supported multilayer graphene friction model was constructed. First, the statistics on the friction coefficient of graphene with different layers under normal loads was carried out, and the relationship between the friction and layer numbers was obtained. Then the contributions of van der Waals force of the tip and the elastic deformation on the top layer of the multilayer graphene substrate on the friction force were analyzed. Finally, it was demonstrated that the effects on normal deformation energy and surface compliance were directly related to the observed friction force, and the contributions of surface energy barrier height and normal stiffness on the friction were quantitatively analyzed. The results indicate that under different loads the friction coefficient of 3 layers is 36% higher than that of 1 layer, and 40% higher than that of 2 layers; all friction forces are greater than van der Waals forces and the difference value between them becomes larger with the numbers of layers increasing; when the normal load is constant, the elastic energy of 3 layers is about 1.5 times as much as that of 2 layers and threefold of that of 1 layer, that is, the elastic energy of each layer has equal contribution to the friction due to the stiffness between layers is in series, the friction of graphene is caused by the competition between the stiffnesses of normal deformation energy and surface compliance.

参考文献/References:

[1] Geim A K. Graphene: Status and prospects [J]. Science, 2009, 324(5934): 1530-1534. DOI:10.1126/science.1158877.
[2] Chang T, Zhang H, Guo Z, et al. Nanoscale directional motion towards regions of stiffness [J]. Physical Review Letters, 2015, 114(1): 015504-1-015504-5. DOI:10.1103/PhysRevLett.114.015504.
[3] Yang J, Liu Z, Grey F, et al. Observation of high-speed microscale superlubricity in graphite [J]. Physical Review Letters, 2013, 110(25): 255504-1-255504-5. DOI:10.1103/PhysRevLett.110.255504.
[4] Kim K S, Lee H J, Lee C, et al. Chemical vapor deposition-grown graphene: The thinnest solid lubricant [J]. ACS Nano, 2011, 5(6): 5107-5114. DOI:10.1021/nn2011865.
[5] Berman D, Erdemir A, Sumant A V. Graphene: A new emerging lubricant [J]. Materials Today, 2014, 17(1): 31-42. DOI:10.1016/j.mattod.2013.12.003.
[6] Wang Z J, Ma T B, Hu Y Z, et al. Energy dissipation of atomic-scale friction based on one-dimensional Prandtl-Tomlinson model [J]. Friction, 2015, 3(2): 170-182. DOI:10.1007/s40544-015-0086-2.
[7] Li Q, Lee C, Carpick R W, et al. Substrate effect on thickness-dependent friction on graphene [J]. Physica Status Solidi B, 2010, 247(11/12): 2909-2914. DOI:10.1002/pssb.201000555.
[8] Smolyanitsky A, Killgore J P, Tewary V K. Effect of elastic deformation on frictional properties of few-layer graphene [J]. Physical Review B, 2012, 85(3): 035412-1-035412-6. DOI:10.1103/physrevb.85.035412.
[9] Lee C, Li Q, Kalb W, et al. Frictional characteristics of atomically thin sheets [J]. Science, 2010, 328(5974): 76-80. DOI:10.1126/science.1184167.
[10] Buldum A, Ciraci S. Atomic-scale study of dry sliding friction [J]. Physical Review B, 1997, 55(4): 2606-2611. DOI:10.1103/physrevb.55.2606.
[11] Filleter T, McChesney J L, Bostwick A, et al. Friction and dissipation in epitaxial graphene films [J]. Physical Review Letters, 2009, 102(8): 086102-1-086102-4. DOI:10.1103/PhysRevLett.102.086102.
[12] Kajita S, Washizu H, Ohmori T. Deep bulk atoms in a solid cause friction [J]. Europhysics Letters, 2009, 87(6): 66002-1-66002-5. DOI:10.1209/0295-5075/87/66002.
[13] Xu L, Ma T B, Hu Y Z. et al. Vanishing stick-slip friction in few-layer graphenes: The thickness effect [J]. Nanotechnology, 2011, 22(28): 285708-1-285708-6. DOI:10.1088/0957-4484/22/28/285708.
[14] Zhang H, Guo Z, Gao H, et al. Stiffness-dependent interlayer friction of graphene [J]. Carbon, 2015, 94: 60-66. DOI:10.1016/j.carbon.2015.06.024.
[15] Plimpton S. Fast parallel algorithms for short-range molecular dynamics [J]. Journal of Computational Physics, 1995, 117(1): 1-19. DOI:10.1006/jcph.1995.1039.
[16] Shin Y J, Stromberg R, Nay R, et al. Frictional characteristics of exfoliated and epitaxial graphene [J]. Carbon, 2011, 49(12): 4070-4073. DOI:10.1016/j.carbon.2011.05.046.

相似文献/References:

[1]葛艳艳,陈云飞,杨决宽,等.轴向电场对纳米管道中溶液离子径向分布的影响[J].东南大学学报(自然科学版),2008,38(4):683.[doi:10.3969/j.issn.1001-0505.2008.04.027]
 Ge Yanyan,Chen Yunfei,Yang Juekuan,et al.Influence of axial applied potential gradient on ion radial distribution in liquid confined in cylindrical nanotubes[J].Journal of Southeast University (Natural Science Edition),2008,38(1):683.[doi:10.3969/j.issn.1001-0505.2008.04.027]
[2]蒋洁,周宾,郝英立.压-电场耦合下纳米尺度水输运的MD模拟[J].东南大学学报(自然科学版),2011,41(4):757.[doi:10.3969/j.issn.1001-0505.2011.04.019]
 Jiang Jie,Zhou Bin,Hao Yingli.MD simulation of nanoscale water flow under coupled pressure-electric fields[J].Journal of Southeast University (Natural Science Edition),2011,41(1):757.[doi:10.3969/j.issn.1001-0505.2011.04.019]
[3]陈丽换,张国栋,陈云飞.纳米尺度下对黏滑现象的分子动力学模拟[J].东南大学学报(自然科学版),2010,40(1):128.[doi:10.3969/j.issn.1001-0505.2010.01.024]
 Chen Lihuan,Zhang Guodong,Chen Yunfei.Molecular dynamics simulation of stick-slip at nanoscale[J].Journal of Southeast University (Natural Science Edition),2010,40(1):128.[doi:10.3969/j.issn.1001-0505.2010.01.024]
[4]孙颖,等.白蛋白和石墨烯的结构及其相互作用的分子动力学模拟[J].东南大学学报(自然科学版),2014,44(1):123.[doi:10.3969/j.issn.1001-0505.2014.01.022]
 Sun Ying,Ding Jiali,et al.Molecular dynamics simulations of albumin and graphene structures and their interaction[J].Journal of Southeast University (Natural Science Edition),2014,44(1):123.[doi:10.3969/j.issn.1001-0505.2014.01.022]

备注/Memo

备注/Memo:
收稿日期: 2016-06-16.
作者简介: 董赟(1984—),男,博士生;陈云飞(联系人),男,博士,教授,博士生导师,yunfeichen@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(51665030,51435003,51575104).
引用本文: 董赟,刘晨晗,段早琦,等.石墨烯的摩擦力和刚度关系的分子动力学模拟[J].东南大学学报(自然科学版),2017,47(1):28-32. DOI:10.3969/j.issn.1001-0505.2017.01.006.
更新日期/Last Update: 2017-01-20