[1]陈萍,熊蔚明.一种可用于莱斯衰落信道的信噪比估计算法[J].东南大学学报(自然科学版),2017,47(2):209-214.[doi:10.3969/j.issn.1001-0505.2017.02.002]
 Chen Ping,Xiong Weiming.An SNR estimation algorithm for Rician fading channel[J].Journal of Southeast University (Natural Science Edition),2017,47(2):209-214.[doi:10.3969/j.issn.1001-0505.2017.02.002]
点击复制

一种可用于莱斯衰落信道的信噪比估计算法()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
47
期数:
2017年第2期
页码:
209-214
栏目:
信息与通信工程
出版日期:
2017-03-20

文章信息/Info

Title:
An SNR estimation algorithm for Rician fading channel
作者:
陈萍123熊蔚明1
1中国科学院国家空间科学中心, 北京 100190; 2中国科学院大学, 北京 100049; 3中国船舶工业系统工程研究院, 北京 100094
Author(s):
Chen Ping123 Xiong Weiming1
1National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China
2University of Chinese Academy of Sciences, Beijing 100049, China
3China State Shipbuilding Corporation System Engineering Research Institute, Beijing 100094, China
关键词:
信噪比估计 莱斯衰落信道 多项式拟合 非数据辅助
Keywords:
signal-to-noise ratio(SNR)estimation Rician fading channel polynomial fitting non-data-aided
分类号:
TN911.22
DOI:
10.3969/j.issn.1001-0505.2017.02.002
摘要:
针对莱斯衰落信道条件下,常规非数据辅助信噪比估计算法复杂度高、适用调制类型单一等问题,提出了一种信噪比估计算法.在建立系统等效模型的基础上,推导出信噪比与接收信号期望和方差的关系表达式.由于在莱斯衰落信道下,该表达式无解析解,故提出用多项式拟合法得到一定范围内的信噪比近似解.仿真和对比分析实验表明,提出的信噪比估计算法不需要使用训练序列,不仅对低阶和高阶多种调制方式具有普适性,而且当信道莱斯因子K=10 dB且信噪比为5~25 dB时,归一化估计偏差均小于0.2,计算时间复杂度与M2M4算法相当,适合一般工程应用需要.
Abstract:
Aimed at the problems in Rician fading channel, i.e. general Non-Data-Aided signal-to-noise ratio(SNR)estimation algorithms were very complex and usually suitable for a certain modulation pattern. This paper proposed an SNR estimation algorithm. On the basis of establishing equivalent system model, the relationship expression of SNR, expectation and variance of received signals were deduced. Under the conditions of the Rician fading channel, the deduced expression had no analytic solutions, thus using the polynomial fitting method to obtain approximate solutions of SNR during a certain range. Simulations and comparison experiments show that, the algorithm does not need any training sequence and is universal for both lower and higher order modulations. If the channel Rician factor K=10 dB and the SNR is between 5 and 25 dB, the normalization bias is lower than 0.2, the computational complexity is comparable with M2M4 algorithm, thus satisfying requirements of general engineering application.

参考文献/References:

[1] 谢显中,刘源源,雷维嘉.高动态环境下基于数据辅助的稳健信噪比估计[J].西南大学学报(自然科学版),2016,38(8):174-181.
  Xie Xianzhong, Liu Yuanyuan, Lei Weijia. Robust data-aided snr estimation algorithm in high dynamic environment[J]. Journal of Southwest University(Natural Science Edition), 2016, 38(8):174-181.(in Chinese)
[2] Li Z X, Yang D W, Wang H, et al. Maximum likelihood SNR estimator for coded MAPSK signals in slow fading channels[C]//Proceedings of 2013 International Conference on Wireless Communications and Signal Processing. Hangzhou, 2013: 1-6.
[3] Wang A F, Xu H. Comparison of several SNR estimators for QPSK modulations[C]//Proceedings of 2012 International Conference on Computer Science and Service System. Nanjing, 2012: 77-80. DOI:10.1109/csss.2012.28.
[4] Wang A F, Xu H, Ke J. NDA moment-based SNR estimation for envelope-based QAM[C]//Proceedings of 2012 IEEE 11th International Conference on Signal Processing. Beijing, 2012: 1341-1344. DOI:10.1109/icosp.2012.6491824.
[5] Li W, Zhang Y, Zhang Y, et al. Subspace-based SNR estimator for OFDM system under different channel conditions[C]//Proceedings of 2013 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting. London, UK, 2013: 1-5. DOI:10.1109/bmsb.2013.6621687.
[6] 许华,王爱粉,杨晓宇.常规数字通信信号信噪比估计综述[J].信号处理,2013,29(6):723-733.DOI:10.3969/j.issn.1003-0530.2013.06.009.
Xu Hua, Wang Aifen, Yang Xiaoyu. Survey of the SNR estimation of conventional digital communication signals[J]. Signal Processing, 2013, 29(6): 723-733. DOI:10.3969/j.issn.1003-0530.2013.06.009. (in Chinese)
[7] Pauluzzi D R, Beaulieu N C. A comparison of SNR estimation techniques for the AWGN channel[J]. IEEE Transactions on Communications, 2000, 48(10): 1681-1691. DOI:10.1109/26.871393.
[8] Alagha N S. Cramer-Rao bounds of SNR estimates for BPSK and QPSK modulated signals[J]. IEEE Commun Letter, 2001, 5(1): 10-12. DOI:10.1109/4234.901810.
[9] 陈云峰,付永明,张炜.基于矩方法的通信信号信噪比估计算法研究[J].通信技术,2015,48(1):23-26. DOI:10.3969/j.issn.1002-0802.2015.01.005.
Chen Yunfeng, Fu Yongming, Zhang Wei. MoM-based SNR estimation algorithms for communication signals [J]. Communication Technology, 2015, 48(1): 23-26. DOI:10.3969/j.issn.1002-0802.2015.01.005. (in Chinese)
[10] Ramesh A, Chockalingam A, Milstein L B. SNR estimation in generalized fading channels and its application to Turbo decoding[C]//2001 International Conference on Communication. Helsinki, Finland, 2001, 4: 1094-1098. DOI:10.1109/icc.2001.936822.
[11] 杨俊,江虹,张秋云.一种改进的非数据辅助SNR估计算法研究[J].计算机科学,2016,43(8):71-73,104. DOI:10.11896/j.issn.1002-137X.2016.8.014.
Yang Jun, Jiang Hong, Zhang Qiuyun. Improved non-data-aided SNR estimation algorithm[J]. Computer Science, 2016, 43(8): 71-73, 104. DOI:10.11896/j.issn.1002-137X.2016.8.014. (in Chinese)
[12] 韩博,吴杰,许华,等.基于相关向量机的信噪比估计算法[J].通信学报,2013,34(4):201-206.DOI:10.3969/j.issn.1000-436x.2013.04.025.
Han Bo, Wu Jie, Xu Hua, et al. New SNR estimation algorithm based on relevance vector machine[J]. Journal on Communications, 2013, 34(4): 201-206. DOI:10.3969/j.issn.1000-436x.2013.04.025. (in Chinese)
[13] 李晋,华惊宇,尤肖虎.一种移动通信中的低复杂度盲信噪比估计算法[J].电子与信息学报,2006,28(6):1054-1058.
  Li Jin, Hua Jingyu, You Xiaohu. A low complexity blind SNR estimator in mobile communication[J]. Journal of Electronics & Information Technology, 2006, 28(6): 1054-1058.(in Chinese)
[14] 张金成,彭华,赵国庆.信噪比估计算法研究[J].信息工程大学学报,2011,12(5):535-543.DOI:10.3969/j.issn.1671-0673.2011.05.005.
Zhang Jincheng, Peng Hua, Zhao Guoqing. Research on SNR estimation algorithms[J]. Journal of Information Engineering University, 2011, 12(5): 535-543. DOI:10.3969/j.issn.1671-0673.2011.05.005. (in Chinese)
[15] Kostov N. Mobile radio channels modeling in Matlab[J]. Radio Engineering, 2003, 12(4): 12-16.
[16] 刘明骞,李兵兵,王婧舒,等.低信噪比下低复杂度的OFDM信号带宽盲估计方法[J].江苏大学学报(自然科学版),2013,34(1):76-80. DOI:10.3969/j.issn.1671-7775.2013.01.015.
Liu Mingqian,Li Bingbing,Wang Jingshu,et al. Bandwidth blind estimation scheme of OFDM signals with low complexity at low SNR[J]. Journal of Jiangsu University(Natural Science Edition), 2013, 34(1): 76-80. DOI:10.3969/j.issn.1671-7775.2013.01.015. (in Chinese)
[17] 郑剑文.特定环境下卫星移动通信信道全阴影模型的研究[D].天津:天津大学电子信息工程学院,2007.
[18] 周涛,陶成,刘留,等.基于测量的高铁宽带无线信道莱斯K因子研究[J].铁道学报,2013,35(9):72-78. DOI:10.3969/j.issn.1001-8360.2013.09.012.
Zhou Tao, Tao Cheng, Liu Liu, et al. Measurement-based research on ricean K-factor of broad-band wireless channel in high-speed railway scenarios[J]. Journal of the China Railway Society, 2013, 35(9): 72-78. DOI:10.3969/j.issn.1001-8360.2013.09.012. (in Chinese)
[19] 华惊宇,黄清,滑翰,等.一种移动环境下的信噪比估计算法及其在多普勒频移估计中的应用[J].通信学报,2005,26(5):132-137.DOI:10.3321/j.issn:1000-436X.2005.05.022.
Hua Jingyu, Huang Qing, Hua Han, et al. SNR estimation scheme and its application in Doppler shift estimation in mobile communication systems[J]. Journal on Communications, 2005, 26(5): 132-137. DOI:10.3321/j.issn:1000-436X.2005.05.022. (in Chinese)

备注/Memo

备注/Memo:
收稿日期: 2016-07-18.
作者简介: 陈萍(1983—),女,博士生;熊蔚明(联系人),男,研究员,博士生导师,xwm@nssc.ac.cn.
基金项目: 国家高技术发展计划(863计划)资助项目(2011AA7033045).
引用本文: 陈萍,熊蔚明.一种可用于莱斯衰落信道的信噪比估计算法[J].东南大学学报(自然科学版),2017,47(2):209-214. DOI:10.3969/j.issn.1001-0505.2017.02.002.
更新日期/Last Update: 2017-03-20