[1]张行,宋康,李春国,等.MIMO-OFDM移动水声通信系统中多普勒扩展估计方案[J].东南大学学报(自然科学版),2017,47(2):215-219.[doi:10.3969/j.issn.1001-0505.2017.02.003]
 Zhang Xing,Song Kang,Li Chunguo,et al.Doppler scale estimation scheme for MIMO-OFDM mobile underwater acoustic communication system[J].Journal of Southeast University (Natural Science Edition),2017,47(2):215-219.[doi:10.3969/j.issn.1001-0505.2017.02.003]
点击复制

MIMO-OFDM移动水声通信系统中多普勒扩展估计方案()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
47
期数:
2017年第2期
页码:
215-219
栏目:
信息与通信工程
出版日期:
2017-03-20

文章信息/Info

Title:
Doppler scale estimation scheme for MIMO-OFDM mobile underwater acoustic communication system
作者:
张行1宋康12李春国1杨绿溪1方世良1
1东南大学水声信号处理教育部重点实验室, 南京 210096; 2青岛大学电子信息学院, 青岛 266071
Author(s):
Zhang Xing1 Song Kang12 Li Chunguo1 Yang Lüxi1 Fang Shiliang1
1Key Laboratory of Underwater Acoustic Signal Processing of Ministry of Education, Southeast University, Nanjing 210096, China
2School of Electronic and Information Engineering, Qingdao University, Qingdao 266071, China
关键词:
水声通信 多输入多输出 正交频分复用 多普勒扩展
Keywords:
underwater acoustic communication multiple-input multiple-output(MIMO) orthogonal frequency division multiplexing(OFDM) Doppler scale
分类号:
TN929.3
DOI:
10.3969/j.issn.1001-0505.2017.02.003
摘要:
为了消除MIMO-OFDM移动水声通信系统中的多普勒效应,提出了一种训练序列结构及其相应的多普勒扩展估计方案.发射端在每一帧信号前插入2段相同的训练序列,接收端使用多个并行相关器对接收到的2段训练序列进行自相关运算,根据输出的最大自相关值所对应的相关器窗口长度即可进行多普勒扩展因子估计.仿真结果表明,与传统的以LFM信号为训练序列的估计方案相比,所提方案充分利用了MIMO技术提供的分集增益,进行更为精确的多普勒扩展因子估计,估计误差低于2×10-3.
Abstract:
To eliminate the Doppler effect in the multiple-input multiple-output orthogonal frequency division multiplexing(MIMO-OFDM)mobile underwater acoustic communication system,a training sequence structure and the corresponding Doppler scale estimation scheme were proposed.The transmitter inserts two identical training sequences ahead of each signal frame, while the receiver uses several parallel correlators to calculate the autocorrelation of the two received training sequences.Then, the Doppler scale factor can be estimated according to the window length of the correlator with the maximum autocorrelation value. The simulation results show that, compared with the traditional estimation scheme using the linear frequency modulation(LFM)signal as the training sequence, the proposed scheme can estimate the Doppler scale factor more accurately by fully utilizing the diversity gains of the MIMO technique, and the estimation error is less than 2×10-3.

参考文献/References:

[1] Roy S, Duman T M, McDonald V, et al. High-rate communication for underwater acoustic channels using multiple transmitters and space-time coding: Receiver structures and experimental results [J]. IEEE Journal of Oceanic Engineering, 2007, 32(3): 663-688. DOI:10.1109/joe.2007.899275.
[2] Carrascosa P C, Stojanovic M. Adaptive MIMO detection of OFDM signals in an underwater acoustic channel[C]//2008 IEEE OCEANS.Quebec City,Canada,2008:1-7. DOI:10.1109/oceans.2008.5151953.
[3] Zhang L, Li M, Li G. Symbol estimation for MIMO underwater acoustic communication based on multiplicative noise model[C]//2014 IEEE International Conference on Communication Problem-Solving(ICCP 2014). Beijing, China,2014: 507-509.
[4] Ranjani G, Sadashivappa G. Characterization of underwater acoustic channels[C]//2015 International Conference on Applied and Theoretical Computing and Communication Technology(iCATccT).Nanjing, China,2015:523-528. DOI:10.1109/icatcct.2015.7456940.
[5] Sharif B S, Neasham J, Hinton O R, et al. A computationally efficient Doppler compensation system for underwater acoustic communications[J]. IEEE Journal of Oceanic Engineering, 2000, 25(1): 52-61. DOI:10.1109/48.820736.
[6] Qu F, Wang Z, Yang L, et al. A journey toward modeling and resolving Doppler in underwater acoustic communications[J]. IEEE Communications Magazine, 2016, 54(2): 49-55. DOI:10.1109/mcom.2016.7402260.
[7] Daoud S, Ghrayeb A. Using resampling to combat Doppler scaling in UWA channels with single-carrier modulation and frequency-domain equalization [J]. IEEE Transactions on Vehicular Technology, 2016, 65(3): 1261-1270. DOI:10.1109/tvt.2015.2409560.
[8] Sharif B S, Neasham J, Hinton O R, et al. Adaptive Doppler compensation for coherent acoustic communication[J]. IEE Proceedings—Radar, Sonar and Navigation, 2000, 147(5): 239-246. DOI:10.1049/ip-rsn:20000665.
[9] Perahia E,Stacey R. Next generation wireless LANs: Throughput, robustness, and reliability in 802.11n[M]. Cambridge:Cambridge University Press, 2008:82-87.
[10] Li B, Zhou S, Stojanovic M, et al. Multicarrier communication over underwater acoustic channels with nonuniform Doppler shifts[J]. IEEE Journal of Oceanic Engineering,2008, 33(2):198-209.
[11] Chen Z, Zheng Y R, Wang J, et al. Synchronization and Doppler scale estimation with dual PN padding TDS-OFDM for underwater acoustic communication[C]//2013 OCEANS.San Diego, CA, USA,2013:1-4.
[12] Zhao Y, Yu H, Wei G, et al. Parameter estimation of wideband underwater acoustic multipath channels based on fractional Fourier transform[J]. IEEE Transactions on Signal Processing,2016, 64(20):5396-5408.DOI:10.1109/tsp.2016.2582466.
[13] Xu T, Tang Z, Leus G,et al. Multi-rate block transmission over wideband multi-scale multi-lag channels[J].IEEE Transactions on Signal Processing, 2013,61(4):964-979. DOI:10.1109/tsp.2012.2230169.

相似文献/References:

[1]麻清华,杨绿溪,何振亚.相关信道下宽带MIMO-OFDM系统中空时频码的分集度分析[J].东南大学学报(自然科学版),2007,37(4):549.[doi:10.3969/j.issn.1001-0505.2007.04.001]
 Ma Qinghua,Yang Luxi,He Zhenya.Diversity analysis of space-time-frequency coded broadband MIMO-OFDM system with correlation across space time and frequency[J].Journal of Southeast University (Natural Science Edition),2007,37(2):549.[doi:10.3969/j.issn.1001-0505.2007.04.001]
[2]周杰,曹志钢,菊池久和.非对称空间统计信道模型及其MIMO多天线系统[J].东南大学学报(自然科学版),2014,44(2):232.[doi:10.3969/j.issn.1001-0505.2014.02.002]
 Zhou Jie,Cao Zhigang,Hisakazu Kikuchi.Asymmetric geometrical statistical channel model and MIMO wireless communications[J].Journal of Southeast University (Natural Science Edition),2014,44(2):232.[doi:10.3969/j.issn.1001-0505.2014.02.002]
[3]曹欢欢,宋康,李春国,等.无线充电的水声通信系统资源分配方案[J].东南大学学报(自然科学版),2016,46(5):923.[doi:10.3969/j.issn.1001-0505.2016.05.004]
 Cao Huanhuan,Song Kang,Li Chunguo,et al.Resource allocation scheme for underwater acoustic communication system with wireless charging[J].Journal of Southeast University (Natural Science Edition),2016,46(2):923.[doi:10.3969/j.issn.1001-0505.2016.05.004]
[4]董赛,宋康,曹欢欢,等.ARQ反馈中继协作水声通信系统资源分配方案[J].东南大学学报(自然科学版),2017,47(2):220.[doi:10.3969/j.issn.1001-0505.2017.02.004]
 Dong Sai,Song Kang,Cao Huanhuan,et al.Resource allocation schedule for relay-aided underwater acoustic communication system with ARQ feedback[J].Journal of Southeast University (Natural Science Edition),2017,47(2):220.[doi:10.3969/j.issn.1001-0505.2017.02.004]

备注/Memo

备注/Memo:
收稿日期: 2016-08-17.
作者简介: 张行(1992—),女,硕士生;李春国(联系人),男,博士,副教授,博士生导师,chunguoli@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(61372101,61671144)、东南大学优秀青年教师教学科研资助计划资助项目.
引用本文: 张行,宋康,李春国,等.MIMO-OFDM移动水声通信系统中多普勒扩展估计方案[J].东南大学学报(自然科学版),2017,47(2):215-219. DOI:10.3969/j.issn.1001-0505.2017.02.003.
更新日期/Last Update: 2017-03-20