[1]王玉娟,宋小闯,陈云飞.猪笼草捕虫笼超滑表面黏附特性测量和抗黏稳定性分析[J].东南大学学报(自然科学版),2017,47(2):259-264.[doi:10.3969/j.issn.1001-0505.2017.02.011]
 Wang Yujuan,Song Xiaochuang,Chen Yunfei.Measurement of adhesion properties and analysis of anti-adhension stability on super-slippery surfaces of nepenthes pitchers[J].Journal of Southeast University (Natural Science Edition),2017,47(2):259-264.[doi:10.3969/j.issn.1001-0505.2017.02.011]
点击复制

猪笼草捕虫笼超滑表面黏附特性测量和抗黏稳定性分析()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
47
期数:
2017年第2期
页码:
259-264
栏目:
机械工程
出版日期:
2017-03-20

文章信息/Info

Title:
Measurement of adhesion properties and analysis of anti-adhension stability on super-slippery surfaces of nepenthes pitchers
作者:
王玉娟宋小闯陈云飞
东南大学机械工程学院, 南京 211189; 江苏省微纳生物医疗器械设计与制造重点实验室, 南京 211189
Author(s):
Wang Yujuan Song Xiaochuang Chen Yunfei
School of Mechanical Engineering, Southeast University, Nanjing 211189, China
Jiangsu Key Laboratory for Design and Manufacture of Micro-nano Biomedical Instruments, Southeast University, Nanjing 211189, China
关键词:
猪笼草 蜡质区 抗黏附 稳定性
Keywords:
nepenthes waxy zone anti-adhesion stabilization
分类号:
TH117
DOI:
10.3969/j.issn.1001-0505.2017.02.011
摘要:
利用环境扫描电子显微镜(ESEM)表征红瓶猪笼草叶笼蜡质滑移区表面微观结构.利用手动悬臂移动法在原子力显微镜(AFM)无针尖探针悬臂上黏附15 μm二氧化硅微球模拟单根刚毛与猪笼草蜡质区表面的接触,对新鲜蜡质区表面黏附力和摩擦力在干燥空气环境和不同湿度条件的空气环境中做定量测试,并以光滑玻璃和热氯仿处理后的猪笼草表面作为参照.研究结果表明:猪笼草蜡质滑移区表面三维片状蜡质晶体是导致昆虫在植物表面打滑的主要原因,该结构能有效减小微球(或刚毛)与相应接触面的接触面积,从而降低微球(或刚毛)的黏附力和摩擦力.猪笼草蜡质滑移区表面三维片状蜡质晶体能有效排除接触区附近的水蒸气,保证了猪笼草蜡质滑移区在不同的湿度条件下均能保持高效抗黏稳定性.猪笼草蜡质滑移区表面的微构筑模式为微纳机电系统中抗黏附设计提供了绝佳的仿生学模板.
Abstract:
The micro-topography of nepenthes waxy zone surfaces was acquired by environment scanning electron microscope(ESEM). Colloid probe using hand-operated cantilever moving method was used to behave as a single seta by gluing a 15 μm silica sphere onto the probe cantilever equipped without tips. Adhesion and friction forces of the fresh waxy zone surface were measured under dry and various humid conditions using these colloid probes, and compared with those of smooth glasses and waxy zone surfaces after exposed in hot chloroform. The results show that three-dimensional wax crystals of nepenthes surface play a key role in leading to the insect slipping on these surfaces, because the structure lowers the adhesion and friction forces by reducing the contact area between the tiny sphere/seta and the surfaces. Additionally, these three-dimensional wax crystals can efficiently drive away water vapor around the contact area, thus keeping the waxy zone with an efficient and highly stable anti-adhesion under various humid conditions. The surface architecture of nepenthes waxy zones provides an excellent bionic model for the anti-adhesion design in micro-nano electromechanical systems.

参考文献/References:

[1] Ellison A M, Gotelli N J. Energetics and the evolution of carnivorous plants: Darwin’s ‘most wonderful plants in the world’[J]. Journal of Experimental Botany, 2009, 60(1):19-42. DOI:10.1093/jxb/ern179.
[2] Gorb E, Haas K, Henrich A, et al. Composite structure of the crystalline epicuticular wax layer of the slippery zone in the pitchers of the carnivorous plant Nepenthes alata and its effect on insect attachment[J]. The Journal of Experimental Biology, 2005, 208(24): 4651-4662. DOI:10.1242/jeb.01939.
[3] Gaume L, Gorb S, Rowe N. Function of epidermal surfaces in the trapping efficiency of Nepenthes alata pitchers[J]. New Phytologist, 2002, 156(3): 479-489. DOI:10.1046/j.1469-8137.2002.00530.x.
[4] Bauer U, Grafe T U, Federle W. Evidence for alternative trapping strategies in two forms of the pitcher plant, Nepenthes rafflesiana[J]. Journal of Experimental Botany, 2011, 62(10): 3683-3692. DOI:10.1093/jxb/err082.
[5] Labonte D, Federle W. Scaling and biomechanics of surface attachment in climbing animals[J]. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 2015, 370(1661): 20140027. DOI:10.1098/rstb.2014.0027.
[6] Kovalev A E, Fillippov A E, Gorb S N. Insect wet steps: Loss of fluid from insect feet adhering to a substrate[J]. Journal of the Royal Society Interface, 2013, 10(78): 20120639. DOI:10.1098/rsif.2012.0639.
[7] Gorb E V, Purtov J, Gorb S N. Adhesion force measurements on the two wax layers of the waxy zone in Nepenthes alata pitchers[J]. Scientific Reports, 2014, 4(3): 5154-5159. DOI:10.1038/srep05154.
[8] 王立新,周强,刘启航. 猪笼草滑移区表面结构参数表征与捕集滑板仿生设计[J]. 农业机械学报,2011,42(1):233-235. DOI:10.3969/j.issn.1000-1298.2011.01.047.
Wang Lixin, Zhou Qiang, Liu Qihang. Dimensions of surface structures of slippery zone in nepenthes pitchers and bionic design of locust trapping plate[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011,42(1):233-235. DOI:10.3969/j.issn.1000-1298.2011.01.047. (in Chinese)
[9] 张鹏飞,张德远,陈华伟. 猪笼草内表面微观结构及其浸润性研究[J].农业机械学报,2014,45(1):341-345. DOI:10.6041/j.issn.1000-1298.2014.01.052.
Zhang Pengfei, Zhang Deyuan, Chen Huawei. Microstructure and wettability character of Nepenthes’ pitcher surfaces[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014,45(1):341-345. DOI:10.6041/j.issn.1000-1298.2014.01.052. (in Chinese)
[10] Gan Y. Attaching spheres to Cantilevers for colloidal probe force measurements: A simplified techniques[J]. Microscope Today, 2005, 13(6): 48-50.
[11] Gorb E V, Hosoda N, Miksch C, et al. Slippery pores: Anti-adhesive effect of nanoporous substrates on the beetle attachment system[J]. Journal of the Royal Society Interface, 2010, 7: 1571-1579. DOI:10.1098/rsif.2010.0081.
[12] Varenberg M, Pugno N M, Gorb S N. Spatulate structures in biological fibrillar adhesion[J]. Soft Matter, 2010, 6(14): 3269-3272.DOI:10.1039/c0032o7g.
[13] 毕可东, 宋小闯, 王玉娟, 等. 猪笼草蜡质滑移区表面反粘附特性的研究[J]. 机械工程学报, 2015, 51(23): 103-109. DOI:10.3901/JME.2015.23.103.
Bi Kedong, Song Xiaochuang, Wang Yujuan, et al. Anti-adhesion mechanisms of nepenthes waxy slippery zone surface[J]. Journal of Mechanical Engineering, 2015, 51(23): 103-109. DOI:10.3901/JME.2015.23.103. (in Chinese)
[14] Wei Z, Zhao Y P. Growth of liquid bridge in AFM[J]. Journal of Physics D: Applied Physics, 2007, 40(14): 4368-4375. DOI:10.1088/0022-3727/40/14/036.
[15] Bhushan B. Adhesion and stiction: Mechanisms, measurement techniques, and methods for reduction[J]. Journal of Vacuum Science & Technology B, 2003, 21(6): 2262-2296. DOI:10.1116/1.1627336.

备注/Memo

备注/Memo:
收稿日期: 2016-08-11.
作者简介: 王玉娟(1974—),女,博士,副教授,yujuanwang@163.com.
基金项目: 国家自然科学基金资助项目(51345012).
引用本文: 王玉娟,宋小闯,陈云飞.猪笼草捕虫笼超滑表面黏附特性测量和抗黏稳定性分析[J].东南大学学报(自然科学版),2017,47(2):259-264. DOI:10.3969/j.issn.1001-0505.2017.02.011.
更新日期/Last Update: 2017-03-20