[1]郭飞宏,王泽宇,仲兆平,等.基于球元重建与大涡模拟耦合并行算法的数值模拟[J].东南大学学报(自然科学版),2017,47(2):283-290.[doi:10.3969/j.issn.1001-0505.2017.02.015]
 Guo Feihong,Wang Zeyu,Zhong Zhaoping,et al.Numerical simulation based on sphere reconstruction and large eddy simulation coupled parallel algorithm[J].Journal of Southeast University (Natural Science Edition),2017,47(2):283-290.[doi:10.3969/j.issn.1001-0505.2017.02.015]
点击复制

基于球元重建与大涡模拟耦合并行算法的数值模拟()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
47
期数:
2017年第2期
页码:
283-290
栏目:
化学化工
出版日期:
2017-03-20

文章信息/Info

Title:
Numerical simulation based on sphere reconstruction and large eddy simulation coupled parallel algorithm
作者:
郭飞宏1王泽宇1仲兆平1王肖祎2
1东南大学能源与环境学院, 南京 210096; 2东南大学建筑设计院有限公司, 南京 210096
Author(s):
Guo Feihong1 Wang Zeyu1 Zhong Zhaoping1 Wang Xiaoyi2
1School of Energy and Environment, Southeast University, Nanjing 210096, China
2Architectural Design and Research Institute Co., Ltd., Southeast University, Nanjing 210096, China
关键词:
柱形颗粒 石英砂 模拟 球元重建 大涡模拟 并行算法
Keywords:
cylindrical particles quarts sand simulation spherical element reconstruction large eddy simulation parallel algorithm
分类号:
TQ051
DOI:
10.3969/j.issn.1001-0505.2017.02.015
摘要:
为了更好地模拟柱形颗粒与石英砂的流动,利用球元重建方法对柱形颗粒进行球元重建.采用大涡模拟中的SGS(sub-grid scale)亚格子模型,对柱形颗粒造成的湍流进行解析.模拟中耦合并行算法,缩短了模型计算时间.基于上述方法,模拟了表观气速为1.5 m/s的柱形颗粒与石英砂的混合流动过程. 通过流动瞬时图像和压力脉动分析表明,模拟结果与实验结果相似,表明耦合并行算法能较好地模拟流化床中柱形颗粒与石英砂的流动.当柱形颗粒尺寸较大时,加剧了湍流效应对混合流动的影响.模拟的z方向气体平均速度呈现中间高两边低的对称分布状态,这与床内的气泡和柱形颗粒分布有关,符合实际流化规律.
Abstract:
To simulate the mixing flow of cylindrical particles and quartz sand, the spherical element was used to reconstruct cylindrical particles. A sub-grid scale(SGS)model was used to analyze the turbulent flow. The coupled parallel algorithm in simulation reduced the computation time. Based on the above method, the mixing flow process of cylindrical particles and the quartz sand at 1.5 m/s was simulated. The simulation results were in good agreement with the experimental results on instantaneous flow and pressure fluctuation. The result shows that the proposed method can simulate the mixing flow of cylindrical particles and the quartz sand in fluidized bed. When the size of cylindrical particles is larger, the influence of the turbulence on mixing flow is aggravated. The average velocity of gas in the z direction is simulated, presenting symmetrical distribution of high in the middle and low on both sides. This is related to the distribution of bubbles and cylindrical particles in fluidized bed, thus it is in line with the actual fluidization law.

参考文献/References:

[1] Khan A A, de Jong W, Jansens P J, et al. Biomass combustion in fluidized bed boilers: Potential problems and remedies[J]. Fuel Processing Technology, 2009, 90(1): 21-50. DOI: 10.1016/j.fuproc.2008.07.012.
[2] Cheng H, Hu Y. Municipal solid waste(MSW)as a renewable source of energy: Current and future practices in China[J]. Bioresource Technology, 2010, 101(11): 3816-3824. DOI:10.1016/j.biortech.2010.01.040.
[3] Hilton J E, Cleary P W. The influence of particle shape on flow modes in pneumatic conveying[J]. Chemical Engineering Science, 2011, 66(3): 231-240. DOI:10.1016/j.ces.2010.09.034.
[4] Wang C, Zhong Z, Wang X. Microscopic flow characteristics in fluidized bed of cylinder-shaped particles[J]. Korean Journal of Chemical Engineering, 2015, 32(12): 2384-2393. DOI:10.1007/s11814-015-0033-y.
[5] Tsuji T, Higashida K, Okuyama Y, et al. Fictitious particle method: A numerical model for flows including dense solids with large size difference[J]. AIChE Journal, 2014, 60(5): 1606-1620. DOI:10.1002/aic.14355.
[6] Hilton J E, Mason L R, Cleary P W. Dynamics of gas-solid fluidised beds with non-spherical particle geometry[J]. Chemical Engineering Science, 2010, 65(5): 1584-1596. DOI:10.1016/j.ces.2009.10.028.
[7] Zhong W Q, Zhang Y, Jin B S, et al. Discrete element method simulation of cylinder-shaped particle flow in a gas-solid fluidized bed[J]. Chemical Engineering & Technology, 2009, 32(3): 386-391. DOI: 10.1002/ceat.200800516.
[8] Ren B, Zhong W, Chen Y, et al. CFD-DEM simulation of spouting of corn-shaped particles[J]. Particuology, 2012, 10(5): 562-572. DOI:10.1016/j.partic.2012.03.011.
[9] Ren B, Zhong W, Jiang X, et al. Numerical simulation of spouting of cylindroid particles in a spouted bed[J]. The Canadian Journal of Chemical Engineering, 2014, 92(5): 928-934. DOI:10.1002/cjce.21900.
[10] 卢洲,刘雪东,潘兵.基于CFD-DEM方法的柱状颗粒在弯管中输送过程的数值模拟[J].中国粉体技术,2011,17(5):65-69.DOI:10.3969/j.issn.1008-5548.2011.05.017.
Lu Zhou, Liu Xuedong, Pan Bing. Numerical simulation of the process of cylindrical particles in elbow pipe based on CFD-DEM method [J]. China Powder Technology, 2011, 17(5): 65-69. DOI:10.3969/j.issn.1008-5548.2011.05.017. (in Chinese)
[11] Oschmann T, Hold J, Kruggel-Emden H. Numerical investigation of mixing and orientation of non-spherical particles in a model type fluidized bed[J]. Powder Technology, 2014, 258: 304-323. DOI: 10.1016/j.powtec.2014.03.046.
[12] Yamamoto Y, Potthoff M, Tanaka T, et al. Large-eddy simulation of turbulent gas-particle flow in a vertical channel: Effect of considering inter-particle collisions[J]. Journal of Fluid Mechanics, 2001, 442: 303-334.DOI:10.1017/s0022112001005092.
[13] Koukouvinis P, Gavaises M, Li J, et al. Large eddy simulation of diesel injector including cavitation effects and correlation to erosion damage[J]. Fuel, 2016, 175: 26-39. DOI: 10.1016/j.fuel.2016.02.037.
[14] Yin B, Yu S, Jia H, et al. Numerical research of diesel spray and atomization coupled cavitation by large eddy simulation(LES)under high injection pressure[J]. International Journal of Heat and Fluid Flow, 2016, 59: 1-9. DOI: 10.1016/j.ijheatfluidflow.2016.01.005.
[15] Hoover K A, Foley M G, Heasler P G, et al. Sub-grid-scale characterization of channel lengths for use in catchment modeling[J]. Water Resources Research, 1991, 27(11): 2865-2873. DOI: 10.1029/91WR01551.
[16] Li T, Garg R, Galvin J, et al. Open-source MFIX-DEM software for gas-solids flows: Part Ⅱ—Validation studies[J]. Powder Technology, 2012, 220(SI): 138-150. DOI: 10.1016/j.powtec.2011.09.020.
[17] Garg R, Galvin J, Li T, et al. Open-source MFIX-DEM software for gas-solids flows: Part Ⅰ—Verification studies[J]. Powder Technology, 2012, 220(SI): 122-137. DOI: 10.1016/j.powtec.2011.09.019.

相似文献/References:

[1]赵欢,王世和,周飞,等.长纤维过滤与石英砂过滤的性能对比试验[J].东南大学学报(自然科学版),2006,36(1):138.[doi:10.3969/j.issn.1001-0505.2006.01.028]
 Zhao Huan,Wang Shihe,Zhou Fei,et al.Study on function correlation between long-fiber filtering and sand filtering[J].Journal of Southeast University (Natural Science Edition),2006,36(2):138.[doi:10.3969/j.issn.1001-0505.2006.01.028]

备注/Memo

备注/Memo:
收稿日期: 2016-07-25.
作者简介: 郭飞宏(1986—),男,博士生;仲兆平(联系人),男,博士,教授,博士生导师,zzhong@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(U13161115,51276040)、东南大学优秀博士学位论文培育基金资助项目(YBJJ1644).
引用本文: 郭飞宏,王泽宇,仲兆平,等.基于球元重建与大涡模拟耦合并行算法的数值模拟[J].东南大学学报(自然科学版),2017,47(2):283-290. DOI:10.3969/j.issn.1001-0505.2017.02.015.
更新日期/Last Update: 2017-03-20