# [1]刘新天,孙张驰,何耀,等.基于环境变量建模的锂电池SOC估计方法[J].东南大学学报(自然科学版),2017,47(2):306-312.[doi:10.3969/j.issn.1001-0505.2017.02.018] 　Liu Xintian,Sun Zhangchi,He Yao,et al.SOC estimation method based on lithium-ion cell model considering environmental factors[J].Journal of Southeast University (Natural Science Edition),2017,47(2):306-312.[doi:10.3969/j.issn.1001-0505.2017.02.018] 点击复制 基于环境变量建模的锂电池SOC估计方法() 分享到： var jiathis_config = { data_track_clickback: true };

47

2017年第2期

306-312

2017-03-20

## 文章信息/Info

Title:
SOC estimation method based on lithium-ion cell model considering environmental factors

Author(s):
Clean Energy Automotive Research Institute, Hefei University of Technology, Hefei 230009, China

Keywords:

TM912
DOI:
10.3969/j.issn.1001-0505.2017.02.018

Abstract:
The internal parameters of the cell at different temperatures and state-of-charge(SOC)were tested and calculated. The factors affecting the variations of parameters were analyzed. The Thevenin model of the lithium-ion cell with variable parameters was established. The gist of segmentation and the method for determining the correlation parameters of the model were discussed. The extended Kalman filter(EKF)algorithm was used to estimate SOC. An improved SOC estimation method which is based on the temperature was given. The proposed cell model can avoid the application limitation of the existing models without considering the influences of environmental factors. Simulation and experimental results show that the SOC estimation method based on the established model can achieve higher accuracy in a wide temperature range.

## 参考文献/References:

[1] 魏克新, 陈峭岩. 基于多模型自适应卡尔曼滤波器的电动汽车电池荷电状态估计[J]. 中国电机工程学报, 2012, 32(31): 19-26. DOI:10.13334/j.0258-8013.pcsee.2012.31.006.
Wei Kexin, Chen Qiaoyan. Battery SOC estimation based on multi-model adaptive Kalman filter[J]. Proceedings of the CSEE, 2012, 32(31): 19-26. DOI:10.13334/j.0258-8013.pcsee.2012.31.006. (in Chinese)
[2] 周美兰, 王吉昌, 李艳萍. 优化的BP 神经网络在预测电动汽车SOC 上的应用[J]. 黑龙江大学自然科学学报, 2015, 12(1): 1-6. DOI:10.13482/j.issn1001-7011.2015.01.006.
Zhou Meilan, Wang Jichang, Li Yanping. Optimized BP neural network in the prediction of electric vehicles SOC [J]. Journal of Natural Science of Heilongjiang University, 2015, 12(1): 1-6. DOI:10.13482/j.issn1001-7011.2015.01.006. (in Chinese)
[3] 何耀, 张陈斌, 刘兴涛, 等. 基于信息融合的LiFePO4动力电池组SOC估计[J].控制与决策, 2014,29(1): 188-192. DOI:10.13195/j.kzyjc.2012.1441.
He Yao, Zhang Chenbin, Liu Xingtao, et al. SOC estimation for LiFePO4 high-power batteries based on information fusion[J]. Control and Decision, 2014, 29(1): 188-192. DOI:10.13195/j.kzyjc.2012.1441. (in Chinese)
[4] 李司光, 张承宁. 锂离子电池荷电状态预测方法研究[J]. 北京理工大学学报, 2012, 32(2): 125-145. DOI:10.15918/j.tbit1001-0645.2012.02.023.
Li Siguang, Zhang Chengning. State of charge evaluation of lithium-ion batteries[J]. Transactions of Beijing Institute of Technology, 2012, 32(2): 125-145. DOI:10.15918/j.tbit1001-0645.2012.02.023. (in Chinese)
[5] 武国良, 周志宇, 于达仁. 应用非稳态开路电压方法估计EV用电池剩余电量研究[J]. 电机与控制学报, 2013, 17(4): 110-115. DOI:10.3969/j.issn.1007-449X.2013.04.018.
Wu Guoliang, Zhou Zhiyu, Yu Daren. Unsteady open circuit voltage method for state of charge estimation of electric vehicle batteries[J]. Electric Machines and Control, 2013, 17(4): 110-115. DOI:10.3969/j.issn.1007-449X.2013.04.018. (in Chinese)
[6] 张云, 张承慧, 崔纳新. 锂离子电池荷电状态估计: 非线性观测器方法[J].控制理论与应用, 2012, 29(12): 1640-1644.
Zhang Yun, Zhang Chenghui, Cui Naxin. Estimation of state-of-charge of lithium-ion battery: Nonlinear observer method[J]. Control Theory & Applications, 2012, 29(12): 1640-1644.(in Chinese)
[7] 杨阳, 汤桃峰, 秦大同,等. 电动汽车锂电池PNGV等效电路模型与SOC 估算方法[J]. 系统仿真学报, 2012, 24(4): 938-942. DOI:10.16182/j.cnki.joss.2012.04.019.
Yang Yang, Tang Taofeng, Qin Datong, et al. PNGV equivalent circuit model and SOC estimation algorithm of lithium batteries for electric vehicle[J]. Journal of System Simulation, 2012, 24(4): 938-942. DOI:10.16182/j.cnki.joss.2012.04.019. (in Chinese)
[8] 贾玉健, 解大, 顾羽洁, 等. 电动汽车电池等效电路模型的分类和特点[J]. 电力与能源, 2011, 32(6): 516-521.
Jia Yujian, Jie Da, Gu Yujie, et al. Classification and characteristics of circuit models for EV’s battery[J]. Power and Energy, 2011, 32(6): 516-521.(in Chinese)
[9] Omar N, Widanage D, Abdel Monem M, et al. Optimization of an advanced battery model parameter minimization tool and development of a novel electrical model for lithium-ion batteries[J]. International Transactions on Electrical Energy Systems, 2014, 24(12): 1747-1767. DOI:10.1002/etep.1815.
[10] 戴海峰, 魏学哲, 孙泽昌. 基于等效电路的内阻自适应锂离子电池模型[J]. 同济大学学报(自然科学版), 2010, 38(1): 98-102.DOI:10.3969/j.issn.0253-374x.2010.01.018.
Dai Haifeng, Wei Xuezhe, Sun Zechang. An inner resistance adaptive model based on equivalent circuit of lithium-ion batteries[J]. Journal of Tongji University(Natural Science), 2010, 38(1): 98-102.DOI:10.3969/j.issn.0253-374x.2010.01.018. (in Chinese)
[11] Jang J, Yoo J. Equivalent circuit evaluation method of lithium polymer battery using bode plot and numerical analysis[J]. IEEE Transactions on Energy Conversion, 2011, 26(1): 290-298. DOI:10.1109/tec.2010.2089796.
[12] Unterrieder C, Priewasser R, Agostinelli M, et al. Comparative study and improvement of battery open-circuit voltage estimation methods [C]//IEEE 55th International Midwest Symposium on Circuits and Systems. Boise, Idaho, USA, 2012: 1076-1079. DOI:10.1109/MWSCAS.2012.6292210.
[13] Xiong R, He H W, Zhao K. Research on an online identification algorithm for a thevenin battery model by an experimental approach[J]. International Journal of Green Energy, 2015,12(3): 272-278. DOI:10.1080/15435075.2014.891512.
[14] Pathuri B V, Christoph U, Mario H. Battery internal state estimation: A comparative study of non-linear state estimation algorithms[C]//9th IEEE Vehicle Power and Propulsion Conference. Beijing, China, 2013: 15-18. DOI: 10.1109/VPPC.2013.6671666.
[15] 李哲, 韩雪冰, 卢兰光,等. 动力型磷酸铁锂电池的温度特性[J]. 机械工程学报, 2011, 47(18): 115-120.DOI:10.3901/JME.2011.18.115.
Li Zhe, Han Xuebing, Lu Languang,et al. Temperature characteristics of power LiFePO4 batteries[J]. Journal of Mechanical Engineering, 2011, 47(18): 115-120. DOI:10.3901/JME.2011.18.115. (in Chinese)
[16] Liu Y Y, He Z W, Gao M Y, et al. Dual estimation of lithium-ion battery internal resistance and SOC based on the EKF[C]//IEEE 5th International Congress on Image and Signal Processing. Chongqing, China,2012:1639-1643. DOI:10.1109/cisp.2012.6469649.
[17] Plett G L. Extended Kalman filtering for battery management systems of LiPB2 based HEV battery packs[J]. Journal of Power Sources, 2004, 134(2): 277-292. DOI:10.1016/j.jpowsour.2004.02.033.
[18] 全国汽车标准化技术委员会. QC/T743—2006 电动汽车用锂离子蓄电池[S]. 北京: 中国标准出版社, 2006.
[19] 刘新天, 刘兴涛, 何耀, 等. 基于Vmin-EKF的动力电池组SOC估计[J]. 控制与决策, 2010, 25(3): 445-449. DOI:10.13195/j.cd.2010.03.128.liuxt.006.
Liu Xintian, Liu Xingtao, He Yao, et al. Based-Vmin-EKF SOC estimation for power Li-ion battery pack[J]. Control and Decision, 2010, 25(3): 445-449. DOI:10.13195/j.cd.2010.03.128.liuxt.006. (in Chinese)
[20] He H W, Qin H Z, Sun X K, et al. Comparison study on the battery SoC estimation with EKF and UKF algorithms[J]. Energies, 2013, 6(10): 5088-5100. DOI:10.3390/en6105088.
[21] Kim J, Cho B H. State-of-charge estimation and state-of-health prediction of a Li-ion degraded battery based on an EKF combined with a per-unit system[J]. IEEE Transactions on Vehicular Technology, 2011, 60(9): 4249-4260. DOI:10.1109/tvt.2011.2168987.

## 相似文献/References:

[1]刘新天,李贺,何耀,等.基于IUPF算法与可变参数电池模型的SOC估计方法[J].东南大学学报(自然科学版),2018,48(1):54.[doi:10.3969/j.issn.1001-0505.2018.01.009]
Liu Xintian,Li He,He Yao,et al.SOC estimation method based on IUPF algorithm and variable parameter battery model[J].Journal of Southeast University (Natural Science Edition),2018,48(2):54.[doi:10.3969/j.issn.1001-0505.2018.01.009]