[1]郑哲远,李兆霞.剪切型Beam Lattice模型及其在岩石翼裂纹扩展和贯通模拟中的应用[J].东南大学学报(自然科学版),2017,47(2):350-355.[doi:10.3969/j.issn.1001-0505.2017.02.025]
 Zheng Zheyuan,Li Zhaoxia.Shear-enhanced Beam Lattice model and its application in simulation of propagation and coalescence of wing crack in geomaterials[J].Journal of Southeast University (Natural Science Edition),2017,47(2):350-355.[doi:10.3969/j.issn.1001-0505.2017.02.025]
点击复制

剪切型Beam Lattice模型及其在岩石翼裂纹扩展和贯通模拟中的应用()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
47
期数:
2017年第2期
页码:
350-355
栏目:
土木工程
出版日期:
2017-03-20

文章信息/Info

Title:
Shear-enhanced Beam Lattice model and its application in simulation of propagation and coalescence of wing crack in geomaterials
作者:
郑哲远李兆霞
东南大学土木工程学院, 南京 210096; 东南大学江苏省工程力学分析重点实验室, 南京 210096
Author(s):
Zheng Zheyuan Li Zhaoxia
College of Civil Engineering, Southeast University, Nanjing 210096, China
Jiangsu Key Laboratory of Engineering Mechanics, Southeast University, Nanjing 210096, China
关键词:
翼裂纹 裂纹贯通 剪切效应 格构模型
Keywords:
wing crack crack coalescence shear effect Lattice model
分类号:
TU443
DOI:
10.3969/j.issn.1001-0505.2017.02.025
摘要:
采用考虑剪切效应和Mohr-Coulomb失效准则的剪切型Beam Lattice(SBL)模型来模拟翼裂纹扩展和贯通过程中出现的次生裂纹.该模型采用随机多边形网格来反映材料的非均质性,在结果分析中应用裂纹扩展路径来区分张拉型和剪切型裂纹扩展.利用SBL模型对不同间距的初始裂纹进行模拟,并将模拟结果和实验观测结果进行比对.结果表明,SBL模型可以较为准确地模拟不同模式下的裂纹扩展和贯通路径.翼裂纹的扩展和贯通呈现阶段性,首先出现张拉型裂纹,当裂纹间距为10 mm时出现清晰的贯通裂纹,最后出现剪切型裂纹.裂纹的扩展进程在加载前中期保持稳定,而在加载末期时明显加快,出现不稳定扩展的现象.SBL模型中考虑更多的剪切效应会得到更多的剪切型裂纹.
Abstract:
A shear-enhanced Beam Lattice(SBL)model considering the shear effect and the Mohr-Coulomb failure criterion is applied to simulate the secondary cracks and wing cracks during propagation and coalescence. In this model, the random polygonal mesh is used to reflect the heterogeneity of materials. In the result analysis, the crack propagation path is applied to distinguish the shear type and the tensile type of crack propagation. The SBL model is applied to simulate the fracture of the flaws with different spacing, and the simulation results are compared with the experimental ones. The results show that the propagation and the coalescence of the flaws under different modes can be well simulated by using the SBL model. The propagation and the coalescence process exhibit several stages. The tensile cracks appear first, and then the obvious coalescence cracks occur when the flaw spacing is 10 mm. The shear cracks appear at the final stage. During the initial and middle loading stages, the propagation process is stable. However, it accelerates and becomes unstable in the final stage. More shear effects in the SBL model can result in more shear cracks.

参考文献/References:

[1] Paterson M S, Wong T. Experimental rock deformation-the brittle field[M]. Berlin,Germany: Springer, 2005: 17-41.
[2] Bobet A, Einstein H H. Fracture coalescence in rock-type materials under uniaxial and biaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences, 1998, 35(7): 863-888. DOI:10.1016/s0148-9062(98)00005-9.
[3] Wong R H C, Chau K T, Tang C A, et al. Analysis of crack coalescence in rock-like materials containing three flaws—part Ⅰ: Experimental approach[J]. International Journal of Rock Mechanics and Mining Sciences, 2001, 38(7): 909-924. DOI:10.1016/s1365-1609(01)00064-8.
[4] 刘军,赵长冰.含预制裂纹的水泥砂浆试块在爆炸载荷作用下损伤特征的数值模拟[J].岩土力学,2007,28(2):279-282.
  Liu Jun, Zhao Changbin. Numerical simulation of damage characteristics of cement mortar block with prefab cracks under blast loading[J]. Rock and Soil Mechanics, 2007, 28(2): 279-282.(in Chinese)
[5] Cotterell B, Rice J R. Slightly curved or kinked cracks[J]. International Journal of Fracture, 1980, 16(2): 155-169. DOI:10.1007/bf00012619.
[6] Bobet A. The initiation of secondary cracks in compression[J]. Engineering Fracture Mechanics, 2000, 66(2): 187-219. DOI:10.1016/s0013-7944(00)00009-6.
[7] 李强,杨庆,栾茂田,等.曲线翼型裂纹扩展路径理论分析及试验验证[J].岩土力学,2010,31(2):345-349. DOI:10.3969/j.issn.1000-7598.2010.02.002.
Li Qiang, Yang Qing, Luan Maotian, et al. Study of curved wing crack path by theory and testing methods[J]. Rock and Soil Mechanics, 2010, 31(2): 345-349. DOI:10.3969/j.issn.1000-7598.2010.02.002.(in Chinese)[8] Zhang X P, Wong L N Y. Crack initiation, propagation and coalescence in rock-like material containing two flaws: a numerical study based on bonded-particle model approach[J]. Rock Mechanics and Rock Engineering, 2013, 46(5): 1001-1021. DOI:10.1007/s00603-012-0323-1.
[9] 杨强,张浩,周维垣.基于格构模型的岩石类材料破坏过程的数值模拟[J].水利学报,2002,33(4):46-50. DOI:10.3321/j.issn:0559-9350.2002.04.009.
Yang Qiang, Zhang Hao, Zhou Weiyuan. Lattice model for simulating failure process of rock[J]. Journal of Hydraulic Engineering, 2002, 33(4): 46-50. DOI:10.3321/j.issn:0559-9350.2002.04.009. (in Chinese)
[10] Bolander J E, Saito S. Fracture analyses using spring networks with random geometry[J]. Engineering Fracture Mechanics, 1998, 61(5): 569-591. DOI:10.1016/s0013-7944(98)00069-1.
[11] Schlangen E, van Mier J G M. Simple lattice model for numerical simulation of fracture of concrete materials and structures[J]. Materials and Structures, 1992, 25(9): 534-542. DOI:10.1007/bf02472449.
[12] de Borst R, Crisfield M A, Remmers J J C, et al. Nonlinear finite element analysis of solids and structures[M]. West Sussex,UK: John Wiley & Sons, 2012: 113-141.
[13] 谢其泰,郭俊志,王建力,等.单轴压缩下含倾斜单裂纹砂岩试件裂纹扩展量测研究[J].岩土力学,2011,32(10):2917-2921,2928. DOI:10.3969/j.issn.1000-7598.2011.10.005.
Hsieh Chitai, Kuo Chuhchih, Wang Cheinlee, et al. A study of crack propagation measurement on sandstone with a single inclined flaw under uniaxial compression[J]. Rock and Soil Mechanics, 2011, 32(10): 2917-2921,2928. DOI:10.3969/j.issn.1000-7598.2011.10.005. (in Chinese)
[14] Wong L N Y, Einstein H H. Systematic evaluation of cracking behavior in specimens containing single flaws under uniaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(2): 239-249. DOI:10.1016/j.ijrmms.2008.03.006.

备注/Memo

备注/Memo:
收稿日期: 2016-08-11.
作者简介: 郑哲远(1987—),男,博士生;李兆霞(联系人),女,博士,教授,博士生导师,zhxli@seu.edu.cn.
基金项目: 国家重点研发计划资助项目(2016YFC0701301)、江苏省研究生培养创新工程资助项目(KYLX_094).
引用本文: 郑哲远,李兆霞.剪切型Beam Lattice模型及其在岩石翼裂纹扩展和贯通模拟中的应用[J].东南大学学报(自然科学版),2017,47(2):350-355. DOI:10.3969/j.issn.1001-0505.2017.02.025.
更新日期/Last Update: 2017-03-20