[1]左晓宝,蒋慷,冯禹翔,等.模拟孔溶液中球墨铸铁表面钝化膜脱钝过程及氯离子阈值分析[J].东南大学学报(自然科学版),2017,47(2):392-396.[doi:10.3969/j.issn.1001-0505.2017.02.031]
 Zuo Xiaobao,Jiang Kang,Feng Yuxiang,et al.Analysis on depassivation process and chloride ion threshold of passive film on surface of ductile iron in simulated pore solution[J].Journal of Southeast University (Natural Science Edition),2017,47(2):392-396.[doi:10.3969/j.issn.1001-0505.2017.02.031]
点击复制

模拟孔溶液中球墨铸铁表面钝化膜脱钝过程及氯离子阈值分析()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
47
期数:
2017年第2期
页码:
392-396
栏目:
材料科学与工程
出版日期:
2017-03-20

文章信息/Info

Title:
Analysis on depassivation process and chloride ion threshold of passive film on surface of ductile iron in simulated pore solution
作者:
左晓宝蒋慷冯禹翔汤玉娟孙香花
南京理工大学土木工程系, 南京 210094
Author(s):
Zuo Xiaobao Jiang Kang Feng Yuxiang Tang Yujuan Sun Xianghua
Department of Civil Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
关键词:
球墨铸铁 模拟孔溶液 钝化膜 脱钝 电化学阻抗谱 氯离子阈值
Keywords:
ductile iron simulated pore solution passive film depassivation electrochemical impedance spectroscopy(EIS) chloride ion threshold
分类号:
TG174.36
DOI:
10.3969/j.issn.1001-0505.2017.02.031
摘要:
为了揭示输水过程中内衬水泥砂浆球墨铸铁管的腐蚀机理,开展了球墨铸铁样品在模拟砂浆孔溶液中的腐蚀实验.采用电化学测试方法,研究了模拟孔溶液中球墨铸铁表面钝化膜的脱钝过程,分析了模拟孔溶液碱度和氯离子浓度对球墨铸铁电化学阻抗谱及极化电阻的影响.结果表明:当模拟孔溶液的pH值从13.6降低至11.5时,球墨铸铁表面钝化膜脱钝时的氯离子浓度从0.30 mol/L减小至0,且脱钝时的球墨铸铁阻抗谱和极化电阻发生明显改变;球墨铸铁表面脱钝氯离子阈值与溶液的pH值呈线性关系,且随pH值的降低而减小.所建立的球墨铸铁表面脱钝氯离子阈值方程,为进一步评估内衬水泥砂浆球墨铸铁管的服役寿命提供依据.
Abstract:
To reveal the corrosion mechanism of cement-mortar-lined ductile iron pipe in water supply, the corrosion experiments on the ductile iron sample in the simulated pore solution were carried out. By using the electrochemical measurement method, the depassivation process of the passive film on the surface of the ductile iron in the simulated pore solution was studied, and the influences of alkalinity and the chloride ion concentration of the simulated pore solution on the electrochemical impedance spectroscopy(EIS)and the polarization resistance(PR)of the ductile iron sample were analyzed. The results show that, when the pH value of the solution reduces from 13.6 to 11.5, the chloride ion concentration in the solution decreases from 0.30 to 0 mol/L, and the EIS and the PR of the ductile iron sample exhibit obvious changes. The chloride ion threshold of depassivation is linear with the pH value of the solution, and decreases with the decrease of the pH value. The proposed chloride ion threshold equation of depassivation on the surface of ductile iron can provide a basis for further evaluating the in-service lifetime of the cement-mortar-lined ductile iron pipe.

参考文献/References:

[1] Lee H D, Shin H C. Residual life assessment of water distribution system through analysis of cast iron pipes[J]. International Journal of Control & Automation, 2015, 8(9): 229-242. DOI:10.14257/ijca.2015.8.9.23.
[2] Kerdkool P, Niyomwas S. Preparation of steel pipe lined Fe-Al intermetallic-TiB2-Al2O3 composite by centrifugal-SHS process[J]. Procedia Engineering, 2012, 32:642-648. DOI:10.1016/j.proeng.2012.01.1321.
[3] Hall S C. Corrosion protection provided by mortar lining in large diameter water pipelines after many years of service[C]//Pipelines 2013: Pipelines and Trenchless Construction and Renewals—A Global Perspective. Worth, TX,USA, 2013:100-112.
[4] Wan K, Li Y, Sun W. Experimental and modelling research of the accelerated calcium leaching of cement paste in ammonium nitrate solution[J]. Construction & Building Materials, 2013, 40(3): 832-846. DOI:10.1016/j.conbuildmat.2012.11.066.
[5] Kroon D H, Lindemuth D, Sampson S, et al. Corrosion protection of ductile iron pipe[J]. Materials Performance, 2005, 44(1): 24-29.
[6] Gan Qingwu, Wu Shan, Li Zhicheng. Study on corrosion of reclaimed water to steel pipe and ductile cast iron pipe[J]. South-to-North Water Transfers and Water Science & Technology, 2014, 12(2): 181-184.
[7] Nakayama N. Inhibitory effects of nitrilotris(methylenephosphonic acid)on cathodic reactions of steels in saturated Ca(OH)2 solutions[J]. Corrosion Science, 2000, 42(11): 1897-1920. DOI:10.1016/s0010-938x(00)00034-2.
[8] Gouda V K.Corrosion and corrosion inhibition of reinforcing steel: Ⅰ. immersion in alkaline solution[J]. British Corrosion Journal, 1970, 5(5): 198-203. DOI:10.1179/000705970798324450.
[9] Poursaee A, Hansson C M. Potential pitfalls in assessing chloride-induced corrosion of steel in concrete[J]. Cement and Concrete Research, 2009, 39(5): 391-400. DOI:10.1016/j.cemconres.2009.01.015.
[10] Zhang F, Pan J, Lin C. Localized corrosion behaviour of reinforcement steel in simulated concrete pore solution[J]. Corrosion Science, 2009, 51(9): 2130-2138. DOI:10.1016/j.corsci.2009.05.044.
[11] Yonezawa T, Ashworth V, Procter R P M. Pore solution composition and chloride effects on the corrosion of steel in concrete[J]. Corrosion,1988,44(7):489-499. DOI:10.5006/1.3583967.
[12] 施锦杰, 孙伟, 耿国庆. 模拟混凝土孔溶液对钢筋钝化的影响[J]. 建筑材料学报, 2011, 14(4): 452-458. DOI:10.3969/j.issn.1007-9629.2011.04.004.
Shi Jinjie, Sun Wei, Geng Guoqing. Influence of simulated concrete pore solution on reinforcing steel passivation[J]. Journal of Building Materials, 2011, 14(4): 452-458. DOI:10.3969/j.issn.1007-9629.2011.04.004. (in Chinese)
[13] Gerengi H, Slepski P, Ozgan E, et al. Investigation of corrosion behavior of 6060 and 6082 aluminum alloys under simulated acid rain conditions[J]. Materials and Corrosion, 2015, 66(3): 233-240. DOI:10.1002/maco.201307287.

相似文献/References:

[1]陈其善,程和法,张勤贤,等.显微激冷与大断面球铁的凝固行为[J].东南大学学报(自然科学版),1995,25(2):43.[doi:10.3969/j.issn.1001-0505.1995.02.008]
 Chen Qishan,Cheng,Hefa,et al.Micro-Chill and the Solidification behavior of Heavy Section Ductile Iron[J].Journal of Southeast University (Natural Science Edition),1995,25(2):43.[doi:10.3969/j.issn.1001-0505.1995.02.008]

备注/Memo

备注/Memo:
收稿日期: 2016-01-22.
作者简介: 左晓宝(1968—),男,博士,教授,博士生导师,xbzuo@sina.com.
基金项目: 国家自然科学基金资助项目(51378262)、江苏省自然科学基金资助项目(BK20141396).
引用本文: 左晓宝,蒋慷,冯禹翔,等.模拟孔溶液中球墨铸铁表面钝化膜脱钝过程及氯离子阈值分析[J].东南大学学报(自然科学版),2017,47(2):392-396. DOI:10.3969/j.issn.1001-0505.2017.02.031.
更新日期/Last Update: 2017-03-20